Modern analysis of automorphic forms by example, Volume 1:
This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instanc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schriftenreihe: | Cambridge studies in advanced mathematics
173 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 1 features critical results, which are proven carefully and in detail, including discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. Volume 2 features automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields |
Beschreibung: | Title from publisher's bibliographic system (viewed on 14 Sep 2018) |
Beschreibung: | 1 Online-Ressource (xxii, 384 Seiten) |
ISBN: | 9781316650332 |
DOI: | 10.1017/9781316650332 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045242284 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 181019s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781316650332 |c Online |9 978-1-316-65033-2 | ||
024 | 7 | |a 10.1017/9781316650332 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316650332 | ||
035 | |a (OCoLC)1057790001 | ||
035 | |a (DE-599)BVBBV045242284 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-384 |a DE-355 |a DE-83 | ||
082 | 0 | |a 515/.9 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Garrett, Paul |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1169445527 |4 aut | |
245 | 1 | 0 | |a Modern analysis of automorphic forms by example, Volume 1 |c Paul Garrett |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a 1 Online-Ressource (xxii, 384 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 173 | |
500 | |a Title from publisher's bibliographic system (viewed on 14 Sep 2018) | ||
520 | |a This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 1 features critical results, which are proven carefully and in detail, including discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. Volume 2 features automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields | ||
650 | 4 | |a Automorphic forms | |
650 | 4 | |a Forms (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-15400-1 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 173 |w (DE-604)BV044781283 |9 173 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316650332 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030630465 | ||
966 | e | |u https://doi.org/10.1017/9781316650332 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316650332 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316650332 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316650332 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178979464151040 |
---|---|
any_adam_object | |
author | Garrett, Paul ca. 20./21. Jh |
author_GND | (DE-588)1169445527 |
author_facet | Garrett, Paul ca. 20./21. Jh |
author_role | aut |
author_sort | Garrett, Paul ca. 20./21. Jh |
author_variant | p g pg |
building | Verbundindex |
bvnumber | BV045242284 |
classification_rvk | SK 180 SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316650332 (OCoLC)1057790001 (DE-599)BVBBV045242284 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316650332 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03130nmm a2200469zcb4500</leader><controlfield tag="001">BV045242284</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181019s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316650332</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-65033-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316650332</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316650332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1057790001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045242284</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garrett, Paul</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1169445527</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern analysis of automorphic forms by example, Volume 1</subfield><subfield code="c">Paul Garrett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxii, 384 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">173</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 14 Sep 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 1 features critical results, which are proven carefully and in detail, including discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. Volume 2 features automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphic forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-15400-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">173</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">173</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316650332</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030630465</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316650332</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316650332</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316650332</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316650332</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045242284 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:12:34Z |
institution | BVB |
isbn | 9781316650332 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030630465 |
oclc_num | 1057790001 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-384 DE-355 DE-BY-UBR DE-83 |
physical | 1 Online-Ressource (xxii, 384 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Garrett, Paul ca. 20./21. Jh. Verfasser (DE-588)1169445527 aut Modern analysis of automorphic forms by example, Volume 1 Paul Garrett Cambridge Cambridge University Press 2018 1 Online-Ressource (xxii, 384 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 173 Title from publisher's bibliographic system (viewed on 14 Sep 2018) This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 1 features critical results, which are proven carefully and in detail, including discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. Volume 2 features automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields Automorphic forms Forms (Mathematics) Erscheint auch als Druck-Ausgabe 978-1-107-15400-1 Cambridge studies in advanced mathematics 173 (DE-604)BV044781283 173 https://doi.org/10.1017/9781316650332 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Garrett, Paul ca. 20./21. Jh Modern analysis of automorphic forms by example, Volume 1 Cambridge studies in advanced mathematics Automorphic forms Forms (Mathematics) |
title | Modern analysis of automorphic forms by example, Volume 1 |
title_auth | Modern analysis of automorphic forms by example, Volume 1 |
title_exact_search | Modern analysis of automorphic forms by example, Volume 1 |
title_full | Modern analysis of automorphic forms by example, Volume 1 Paul Garrett |
title_fullStr | Modern analysis of automorphic forms by example, Volume 1 Paul Garrett |
title_full_unstemmed | Modern analysis of automorphic forms by example, Volume 1 Paul Garrett |
title_short | Modern analysis of automorphic forms by example, Volume 1 |
title_sort | modern analysis of automorphic forms by example volume 1 |
topic | Automorphic forms Forms (Mathematics) |
topic_facet | Automorphic forms Forms (Mathematics) |
url | https://doi.org/10.1017/9781316650332 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT garrettpaul modernanalysisofautomorphicformsbyexamplevolume1 |