State-dependent processing in spiking neural networks:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Freiburg im Breisgau
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Enthält Sonderabdrucke |
Beschreibung: | xv, 214 Seiten Illustrationen, Diagramme 30 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045229741 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 181012s2018 gw a||| m||| 00||| eng d | ||
015 | |a 18,H09 |2 dnb | ||
016 | 7 | |a 1163755281 |2 DE-101 | |
020 | |c Broschur | ||
035 | |a (OCoLC)1136272937 | ||
035 | |a (DE-599)BSZ50622984X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-355 | ||
084 | |a 570 |2 sdnb | ||
100 | 1 | |a Duarte, Renato |e Verfasser |0 (DE-588)1160899533 |4 aut | |
245 | 1 | 0 | |a State-dependent processing in spiking neural networks |c presented by Renato Duarte |
264 | 1 | |a Freiburg im Breisgau |c [2018] | |
300 | |a xv, 214 Seiten |b Illustrationen, Diagramme |c 30 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Enthält Sonderabdrucke | ||
502 | |b Dissertation |c Albert-Ludwigs-Universität Freiburg im Breisgau |d 2018 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/1163755281/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030618149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030618149 |
Datensatz im Suchindex
_version_ | 1804178955773673472 |
---|---|
adam_text | CONTENTS
FOREWORD 1
1 INTRODUCTION 3
1.1 THE NATURE OF THE PROBLEM
............................................................................
4
1.1.1 PATTERN PERCEPTION AND RULE LE A R N IN G
..........................................
5
1.1.2 RECURRENT NETWORKS AS EXCITABLE
RESERVOIRS................................. 6
1.2 BENCHMARKING N E U RO B IO LO G Y
..................................................................... 7
1.3 SCOPE AND S TRU C TU RE
.....................................................................................
9
2 DYNAMIC STABILITY OF SEQUENTIAL STIMULUS REPRESENTATIONS IN ADAPTING
NEU
RONAL NETWORKS 11
2.1
INTRODUCTION.................................................................................................
12
2.2 MATERIALS AND M E TH O D S
...................................................
14
2.2.1 N ETW
ORK...........................................................................................
14
2.2.2 SYNAPTIC P LA S TIC ITY
.......................................................................
15
2.2.3 CONSTRAINING MODEL PARAMETERS
................................................. 15
2.2.4 INPUT S TIM U
LI.................................................................................
16
2.2.5 DATA A N
ALYSIS.................................................................................
16
2.2.6 NUMERICAL S IM ULATIO N
S................................................................. 18
2.3 R
ESULTS...........................................................................................................
19
2.3.1 IMPACT OF PLASTICITY ON NETWORK D Y N A M IC S
................................
19
2.3.2 STIMULUS DISCRIMINATION
.............................................................. 20
2.3.3 DIFFERENTIAL EFFECTS OF PLASTICITY
................................................. 25
2.4 D
ISCUSSION....................................................................................................
27
2.5
REFERENCES....................................................................................................
29
3 EXPANSION AND STATE-DEPENDENT VARIABILITY ALONG SENSORY PROCESSING
STREAMS 33
3.1
REFERENCES....................................................................................................
35
4 CLOSED LOOP INTERACTIONS BETWEEN SPIKING NEURAL NETWORKS AND ROBOTIC
SIM
ULATORS BASED ON MUSIC AND ROS 37
4.1
INTRODUCTION.................................................................................................
38
4.1.1 DESCRIPTION OF THE TO O LC H A IN
.......................................................
39
4.2 MATERIALS AND M E TH O D S
..............................................................................
39
4.2.1 THE MUSIC CONFIGURATION F I L E
.................................................... 39
4.2.2 ENCODING DECODING AND A D A P TA TIO N
..........................................
39
XII
CONTENTS
4.2.3 PERFORMANCE MEASUREMENTS
........................................................
41
4.3 R
ESULTS...........................................................................................................
42
4.3.1 PERFORMANCE
.................................................................................
42
4.3.2 IMPLEMENTATION OF A BRAITENBERG V EH
ICLE.................................... 44
4.4 D
ISCUSSION.....................................................................................................
44
4.4.1 P E RFO RM A N C E
.................................................................................
44
4.4.2 COMPLEXITY OF NEURONAL SIM U LA TIO N S
..........................................
45
4.4.3 A P P LIC A TIO N S
.................................................................................
45
4.5 R
EFERENCES.....................................................................................................
46
5 LIQUID COMPUTING ON AND OFF THE EDGE OF CHAOS WITH A STRIATAL
MICROCIRCUIT 49
5.1
INTRODUCTION..................................................................................................
50
5.2 R
ESULTS...........................................................................................................
52
5.2.1 STRIATAL MICROCIRCUIT
....................................................................
52
5.2.2 ACTIVITY STATISTICIS OF STRIATAL MICROCIRCUIT M O D E L
.......................
53
5.2.3 SEPARATION P RO P ERTY
........................................................................
54
5.2.4 COMPUTATIONAL PROPERTIES OF THE STRIATAL MICROCIRCUIT MODEL . . 55
5.3 D
ISCUSSION.....................................................................................................
59
5.4 MATERIALS AND M E TH O D S
..............................................................................
62
5.4.1 INPUT E N C O D IN G
..............................................................................
62
5.4.2 ACTIVITY ANALYSIS METHODS
........................................................... 62
5.4.3 LINEAR RE A D O U TS
..............................................................................
63
5.4.4 COMPUTATIONAL
PROPERTIES..............................................................
63
5.5 R
EFERENCES.....................................................................................................
64
6 THE BEST SPIKE FILTER KERNEL IS A NEURON 67
6.1 SPIKING NEURAL NETWORK M O D E LS
.................................................................
68
6.1.1 D E C O D IN G
........................................................................................
69
6.1.2 CHOICE OF K E R N E L
............................................................................
69
6.1.3 STOCK-FLOW D U A L I T Y
.........................................................................
69
6.1.4 DECODING ON STA TE -V A RIA B LE S
........................................................
69
6.1.5 NEURONS AS SPIKE FILTERING K E R N E L S
..............................................
69
6.2 EXPERIMENTAL RESULTS
.........................................................................
69
6.3 CONCLUSION
..................................................................................................
69
6.4 R
EFERENCES.....................................................................................................
69
7 SELF-ORGANIZED ARTIFICIAL GRAMMAR LEARNING IN SPIKING NEURAL NETWORKS
71
7.1 IN
TRODUCTION..................................................................................................
72
7.1.1 ARTIFICIAL GRAMMAR L E A RN IN G
.......................................................
72
7.1.2 COMPUTING WITH NEURAL CIRCU ITS
....................................................
73
7.2 SELF-ORGANIZING SPIKING NETWORK
........................................................... 73
7.2.1 A D A P TA TIO N
.....................................................................................
74
7.2.2 INPUT S TR U C TU RE
..............................................................................
74
7.3 PREDICTIVE MODELLING FOR THE R G
.............................................................. 74
7.3.1 PREDICTION PERFORM
ANCE................................................................. 75
7.4 JUDGING STRING L E G A LITY
..............................................................................
76
7.5 D
ISCUSSION.....................................................................................................
77
7.6 R
EFERENCES.....................................................................................................
77
8 SYNAPTIC PATTERNING AND THE TIMESCALES OF CORTICAL DYNAM ICS 79
8.1
INTRODUCTION.................................................................................................
80
8.2 FORM FOLLOWS FUNCTION
..............................................................................
81
8.2.1 CORTICAL TRANSCRIPTION P A TTE R N S
....................................................
81
8.2.2 RECEPTOR FINGERPRINTS IN THE ADULT C O R TE X
................
81
8.3 TEMPORAL RECEPTIVITY IN CORTICAL CIRCUITS
................................................. 82
8.3.1 BALANCED STATES AND EMERGENT TEMPORAL S TR U C TU R E
..................... 83
8.3.2 RECURRENT ECHOES THROUGH COMPLEX SYNAPSES
..........................
84
8.3.3 MULTIPLE TIMESCALES OF ACTIVITY-DEPENDENT MODIFICATIONS . . . 85
8.4 CONCLUSIONS AND O U TLO O K
...........................................................................
85
9 LEVERAGING HETEROGENEITY FOR NEURAL COM PUTATION WITH FADING M EM ORY
IN
LAYER 2/3 CORTICAL M ICROCIRCUITS 91
9.1
INTRODUCTION.................................................................................................
94
9.1.1 HETEROGENEOUS BUILDING BLOCKS IN THE NECORTICAL CIRCUITRY . . . 94
9.1.2 DESCRIPTIVE ADEQU ACY
.................................................................... 96
9.2 BUILDING THE M ICRO CIRCU
IT..........................................................................
97
9.2.1 NEURONAL PROPERTIES
.......................................................................
98
9.2.2 SYNAPTIC P RO P E RTIE S
.......................................................................
100
9.2.3 STRUCTURAL P RO P E RTIE S
.................................................................... 102
9.3 EMERGENT POPULATION D Y N AM
ICS................................................................. 103
9.3.1 EXCITATION/INHIBITION B A LA N C E
.......................................................
104
9.4 ACTIVE PROCESSING AND COM PUTATION
..........................................................
106
9.4.1 SPIKING ACTIVITY IN THE ACTIVE S T A T E
.............................................
106
9.4.2 TEMPORAL TUNING AND MEMORY CAPACITY
.......................................
108
9.4.3 PROCESSING CAPACITY
.......................................................................
I L L
9.5 D
ISCUSSION....................................................................................................
112
9.5.1 CORTICAL STA TE
S.................................................................................
113
9.5.2 HETEROGENEITY AND INFORMATION PROCESSING
................................
114
9.5.3 LIMITATIONS AND FUTURE W O R K
.......................................................
115
9.5.4 DATA-DRIVEN COMPUTATIONAL
NEUROSCIENCE.................................... 116
9.6 MATERIALS AND M E TH O D S
..............................................................................
117
9.6.1 NEURONAL D Y N AM ICS
.......................................................................
117
9.6.2 SYNAPTIC D Y N A M IC S
.......................................................................
117
9.6.3 GENERATING STRUCTURAL H E TE RO G E N E ITY
..........................................
117
9.6.4 PROFILING THE M IC RO C IRC U ITS
..........................................................
118
9.6.5 NUMERICAL SIMULATIONS IMPLEMENTATION AND DATA ANALYSIS . . . 120
9.7
REFERENCES....................................................................................................
121
10 DISCUSSION AND OUTLOOK 139
10.1 FUNCTIONAL N E U RO D Y N A M IC
S........................................................................
140
10.1.1 STATE-DEPENDENCE AND PROCESSING P R E C IS IO N
.............................
141
10.1.2 INTRINSIC MANIFOLDS AND STRUCTURE LE A R N IN G
..................................
143
10.2 FUNCTIONAL M A P P IN G S
..................................................................................
145
10.2.1 INPUT TRANSDUCTION - THE ENCODING P RO B LE M
................................. 146
10.2.2 STATE TRANSDUCTION - THE DECODING PRO B LE M
..................................
148
10.3 PROCESSING M E M O RY
.....................................................................................
148
10.4 COMPOSITIONAL HIERARCHIES
........................................................................
150
10.4.1 HIERARCHICAL
PROCESSING.................................................................
152
APPENDICES 153
A NEURAL MICROCIRCUIT SIMULATION AND ANALYSIS TOOLKIT (NMSAT) 155
A .L D ISCLAIM
ER....................................................................................................
156
A.2 GETTING S T A R T E D
..........................................................................................
156
A.2.1 D
EPENDENCIES.................................................................................
156
A.2.2 IN S TA LLIN G
........................................................................................
156
A.3 RUNNING AN E X P E RIM E N
T.............................................................................
157
A.4 SIMULATION O U TP U
T.......................................................................................
157
A.5 ANALYSING AND P L O T T I N G
.............................................................................
157
A.6 HARVESTING STORED R E S U L T S
..........................................................................
158
A.7 E X A M P LE S
....................................................................................................
158
A.8 AUTHORS AND C O N TRIB U TO RS
..........................................................................
158
A.9 HELP AND S U P P O R T
.......................................................................................
158
A. 10 CITING U S
.......................................................................................................
158
A . L 1 L I C E N S E
.......................................................................................................
158
B SUPPLEMENTARY MATERIALS FOR CHAPTER 2 161
B . L SUPPLEMENTARY F IG U R E S
.............................................................................
163
B.2 SUPPLEMENTARY T
ABLES................................................................................
167
B. 3 R
EFERENCES....................................................................................................
170
C SUPPLEMENTARY MATERIALS FOR CHAPTER 5 171
C . L SUPLEMENTARY T A B L E S
................................................................................
172
C. 2 R
EFERENCES............................................................................
176
D SUPPLEMENTARY MATERIALS FOR CHAPTER 9 177
D . L SUPLEMENTARY T A B L E S
................................................................................
179
D.2 PRIMARY DATA S O U RC E
S................................................................................
181
D.3 SUPPLEMENTARY F IG U R E S
.............................................................................
183
D.4 REPRODUCIBILITY AND R E P LIC A TIO N
............................................................
187
D.4.1 OSF P RO JE C
T....................................................................................
187
D.4.2 SOFTWARE AND SOURCE C O D E
..........................................................
187
D.4.3 D A TASE
TS...........................................................................................
188
D.5 REFERENCES
191
|
any_adam_object | 1 |
author | Duarte, Renato |
author_GND | (DE-588)1160899533 |
author_facet | Duarte, Renato |
author_role | aut |
author_sort | Duarte, Renato |
author_variant | r d rd |
building | Verbundindex |
bvnumber | BV045229741 |
ctrlnum | (OCoLC)1136272937 (DE-599)BSZ50622984X |
discipline | Biologie |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01400nam a2200361 c 4500</leader><controlfield tag="001">BV045229741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181012s2018 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,H09</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1163755281</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="c">Broschur</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1136272937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ50622984X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duarte, Renato</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1160899533</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">State-dependent processing in spiking neural networks</subfield><subfield code="c">presented by Renato Duarte</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Freiburg im Breisgau</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 214 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">30 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enthält Sonderabdrucke</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Albert-Ludwigs-Universität Freiburg im Breisgau</subfield><subfield code="d">2018</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/1163755281/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030618149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030618149</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV045229741 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:12:12Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030618149 |
oclc_num | 1136272937 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | xv, 214 Seiten Illustrationen, Diagramme 30 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
record_format | marc |
spelling | Duarte, Renato Verfasser (DE-588)1160899533 aut State-dependent processing in spiking neural networks presented by Renato Duarte Freiburg im Breisgau [2018] xv, 214 Seiten Illustrationen, Diagramme 30 cm txt rdacontent n rdamedia nc rdacarrier Enthält Sonderabdrucke Dissertation Albert-Ludwigs-Universität Freiburg im Breisgau 2018 (DE-588)4113937-9 Hochschulschrift gnd-content B:DE-101 application/pdf http://d-nb.info/1163755281/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030618149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Duarte, Renato State-dependent processing in spiking neural networks |
subject_GND | (DE-588)4113937-9 |
title | State-dependent processing in spiking neural networks |
title_auth | State-dependent processing in spiking neural networks |
title_exact_search | State-dependent processing in spiking neural networks |
title_full | State-dependent processing in spiking neural networks presented by Renato Duarte |
title_fullStr | State-dependent processing in spiking neural networks presented by Renato Duarte |
title_full_unstemmed | State-dependent processing in spiking neural networks presented by Renato Duarte |
title_short | State-dependent processing in spiking neural networks |
title_sort | state dependent processing in spiking neural networks |
topic_facet | Hochschulschrift |
url | http://d-nb.info/1163755281/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030618149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT duarterenato statedependentprocessinginspikingneuralnetworks |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis