Multivariate approximation:
This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is di...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
32 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area |
Beschreibung: | Title from publisher's bibliographic system (viewed on 25 Jul 2018) |
Beschreibung: | 1 online resource (xvi, 534 pages) |
ISBN: | 9781108689687 |
DOI: | 10.1017/9781108689687 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045188680 | ||
003 | DE-604 | ||
005 | 20181213 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781108689687 |9 9781108689687 | ||
024 | 7 | |a 10.1017/9781108689687 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108689687 | ||
035 | |a (OCoLC)1053819085 | ||
035 | |a (DE-599)BVBBV045188680 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-384 | ||
082 | 0 | |a 511/.4 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 905 |0 (DE-625)143269: |2 rvk | ||
100 | 1 | |a Temlyakov, Vladimir |d 1953- |e Verfasser |0 (DE-588)102386116X |4 aut | |
245 | 1 | 0 | |a Multivariate approximation |c V. Temlyakov |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a 1 online resource (xvi, 534 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 32 | |
500 | |a Title from publisher's bibliographic system (viewed on 25 Jul 2018) | ||
520 | |a This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area | ||
650 | 4 | |a Approximation theory | |
650 | 0 | 7 | |a Multivariate Approximation |0 (DE-588)4314108-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Approximation |0 (DE-588)4127922-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Multivariate Approximation |0 (DE-588)4314108-0 |D s |
689 | 0 | 1 | |a Nichtlineare Approximation |0 (DE-588)4127922-0 |D s |
689 | 0 | 2 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | 3 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 9781108428750 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108689687 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030577854 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781108689687 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108689687 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108689687 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178882016837632 |
---|---|
any_adam_object | |
author | Temlyakov, Vladimir 1953- |
author_GND | (DE-588)102386116X |
author_facet | Temlyakov, Vladimir 1953- |
author_role | aut |
author_sort | Temlyakov, Vladimir 1953- |
author_variant | v t vt |
building | Verbundindex |
bvnumber | BV045188680 |
classification_rvk | SK 470 SK 600 SK 905 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108689687 (OCoLC)1053819085 (DE-599)BVBBV045188680 |
dewey-full | 511/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.4 |
dewey-search | 511/.4 |
dewey-sort | 3511 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108689687 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03382nmm a2200565zcb4500</leader><controlfield tag="001">BV045188680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181213 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108689687</subfield><subfield code="9">9781108689687</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108689687</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108689687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053819085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045188680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 905</subfield><subfield code="0">(DE-625)143269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Temlyakov, Vladimir</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)102386116X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate approximation</subfield><subfield code="c">V. Temlyakov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 534 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 25 Jul 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Approximation</subfield><subfield code="0">(DE-588)4314108-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Approximation</subfield><subfield code="0">(DE-588)4127922-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Approximation</subfield><subfield code="0">(DE-588)4314108-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Approximation</subfield><subfield code="0">(DE-588)4127922-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">9781108428750</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108689687</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030577854</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108689687</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108689687</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108689687</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045188680 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:01Z |
institution | BVB |
isbn | 9781108689687 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030577854 |
oclc_num | 1053819085 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 |
owner_facet | DE-12 DE-92 DE-384 |
physical | 1 online resource (xvi, 534 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Temlyakov, Vladimir 1953- Verfasser (DE-588)102386116X aut Multivariate approximation V. Temlyakov Cambridge Cambridge University Press 2018 1 online resource (xvi, 534 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 32 Title from publisher's bibliographic system (viewed on 25 Jul 2018) This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area Approximation theory Multivariate Approximation (DE-588)4314108-0 gnd rswk-swf Nichtlineare Approximation (DE-588)4127922-0 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Multivariate Approximation (DE-588)4314108-0 s Nichtlineare Approximation (DE-588)4127922-0 s Approximationstheorie (DE-588)4120913-8 s Funktionalanalysis (DE-588)4018916-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, hardback 9781108428750 https://doi.org/10.1017/9781108689687 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Temlyakov, Vladimir 1953- Multivariate approximation Approximation theory Multivariate Approximation (DE-588)4314108-0 gnd Nichtlineare Approximation (DE-588)4127922-0 gnd Funktionalanalysis (DE-588)4018916-8 gnd Approximationstheorie (DE-588)4120913-8 gnd |
subject_GND | (DE-588)4314108-0 (DE-588)4127922-0 (DE-588)4018916-8 (DE-588)4120913-8 |
title | Multivariate approximation |
title_auth | Multivariate approximation |
title_exact_search | Multivariate approximation |
title_full | Multivariate approximation V. Temlyakov |
title_fullStr | Multivariate approximation V. Temlyakov |
title_full_unstemmed | Multivariate approximation V. Temlyakov |
title_short | Multivariate approximation |
title_sort | multivariate approximation |
topic | Approximation theory Multivariate Approximation (DE-588)4314108-0 gnd Nichtlineare Approximation (DE-588)4127922-0 gnd Funktionalanalysis (DE-588)4018916-8 gnd Approximationstheorie (DE-588)4120913-8 gnd |
topic_facet | Approximation theory Multivariate Approximation Nichtlineare Approximation Funktionalanalysis Approximationstheorie |
url | https://doi.org/10.1017/9781108689687 |
work_keys_str_mv | AT temlyakovvladimir multivariateapproximation |