Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies:
At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1999
|
Schriftenreihe: | Foundations of Engineering Mechanics
|
Schlagworte: | |
Online-Zugang: | BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories |
Beschreibung: | 1 Online-Ressource (XVI, 557 p. 25 illus) |
ISBN: | 9783540696339 |
DOI: | 10.1007/978-3-540-69633-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045187929 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783540696339 |9 978-3-540-69633-9 | ||
024 | 7 | |a 10.1007/978-3-540-69633-9 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-540-69633-9 | ||
035 | |a (OCoLC)864089943 | ||
035 | |a (DE-599)BVBBV045187929 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 620.1 |2 23 | |
100 | 1 | |a Guz, A. N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies |c by A. N. Guz |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1999 | |
300 | |a 1 Online-Ressource (XVI, 557 p. 25 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Foundations of Engineering Mechanics | |
520 | |a At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Structural Mechanics | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Continuum mechanics | |
650 | 4 | |a Structural mechanics | |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deformationsverhalten |0 (DE-588)4148995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörpermechanik |0 (DE-588)4129367-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dreidimensionales Modell |0 (DE-588)4475269-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dünnwandiges Bauelement |0 (DE-588)4210413-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deformation |0 (DE-588)4070262-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastomechanik |0 (DE-588)4014161-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturelle Stabilität |0 (DE-588)4295517-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deformation |0 (DE-588)4070262-5 |D s |
689 | 0 | 1 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | 2 | |a Elastomechanik |0 (DE-588)4014161-5 |D s |
689 | 0 | 3 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Dünnwandiges Bauelement |0 (DE-588)4210413-0 |D s |
689 | 1 | 1 | |a Strukturelle Stabilität |0 (DE-588)4295517-8 |D s |
689 | 1 | 2 | |a Dreidimensionales Modell |0 (DE-588)4475269-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 2 | 1 | |a Deformationsverhalten |0 (DE-588)4148995-0 |D s |
689 | 2 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Festkörpermechanik |0 (DE-588)4129367-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662219232 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-69633-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030577106 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-540-69633-9 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178880640057344 |
---|---|
any_adam_object | |
author | Guz, A. N. |
author_facet | Guz, A. N. |
author_role | aut |
author_sort | Guz, A. N. |
author_variant | a n g an ang |
building | Verbundindex |
bvnumber | BV045187929 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-540-69633-9 (OCoLC)864089943 (DE-599)BVBBV045187929 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-3-540-69633-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04978nmm a2200853zc 4500</leader><controlfield tag="001">BV045187929</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540696339</subfield><subfield code="9">978-3-540-69633-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-69633-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-540-69633-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864089943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187929</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guz, A. N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies</subfield><subfield code="c">by A. N. Guz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 557 p. 25 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Foundations of Engineering Mechanics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformationsverhalten</subfield><subfield code="0">(DE-588)4148995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörpermechanik</subfield><subfield code="0">(DE-588)4129367-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dreidimensionales Modell</subfield><subfield code="0">(DE-588)4475269-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dünnwandiges Bauelement</subfield><subfield code="0">(DE-588)4210413-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastomechanik</subfield><subfield code="0">(DE-588)4014161-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturelle Stabilität</subfield><subfield code="0">(DE-588)4295517-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elastomechanik</subfield><subfield code="0">(DE-588)4014161-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Dünnwandiges Bauelement</subfield><subfield code="0">(DE-588)4210413-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Strukturelle Stabilität</subfield><subfield code="0">(DE-588)4295517-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Dreidimensionales Modell</subfield><subfield code="0">(DE-588)4475269-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Deformationsverhalten</subfield><subfield code="0">(DE-588)4148995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Festkörpermechanik</subfield><subfield code="0">(DE-588)4129367-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662219232</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-69633-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030577106</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-69633-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187929 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:00Z |
institution | BVB |
isbn | 9783540696339 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030577106 |
oclc_num | 864089943 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVI, 557 p. 25 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Foundations of Engineering Mechanics |
spelling | Guz, A. N. Verfasser aut Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies by A. N. Guz Berlin, Heidelberg Springer Berlin Heidelberg 1999 1 Online-Ressource (XVI, 557 p. 25 illus) txt rdacontent c rdamedia cr rdacarrier Foundations of Engineering Mechanics At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories Engineering Continuum Mechanics and Mechanics of Materials Structural Mechanics Computational Intelligence Mechanics Computational intelligence Continuum mechanics Structural mechanics Festkörper (DE-588)4016918-2 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Deformationsverhalten (DE-588)4148995-0 gnd rswk-swf Festkörpermechanik (DE-588)4129367-8 gnd rswk-swf Dreidimensionales Modell (DE-588)4475269-6 gnd rswk-swf Dünnwandiges Bauelement (DE-588)4210413-0 gnd rswk-swf Deformation (DE-588)4070262-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Elastomechanik (DE-588)4014161-5 gnd rswk-swf Strukturelle Stabilität (DE-588)4295517-8 gnd rswk-swf Deformation (DE-588)4070262-5 s Stabilität (DE-588)4056693-6 s Elastomechanik (DE-588)4014161-5 s Dimension 3 (DE-588)4321722-9 s 1\p DE-604 Dünnwandiges Bauelement (DE-588)4210413-0 s Strukturelle Stabilität (DE-588)4295517-8 s Dreidimensionales Modell (DE-588)4475269-6 s 2\p DE-604 Festkörper (DE-588)4016918-2 s Deformationsverhalten (DE-588)4148995-0 s Mathematisches Modell (DE-588)4114528-8 s 3\p DE-604 Festkörpermechanik (DE-588)4129367-8 s 4\p DE-604 Erscheint auch als Druck-Ausgabe 9783662219232 https://doi.org/10.1007/978-3-540-69633-9 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guz, A. N. Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies Engineering Continuum Mechanics and Mechanics of Materials Structural Mechanics Computational Intelligence Mechanics Computational intelligence Continuum mechanics Structural mechanics Festkörper (DE-588)4016918-2 gnd Stabilität (DE-588)4056693-6 gnd Dimension 3 (DE-588)4321722-9 gnd Deformationsverhalten (DE-588)4148995-0 gnd Festkörpermechanik (DE-588)4129367-8 gnd Dreidimensionales Modell (DE-588)4475269-6 gnd Dünnwandiges Bauelement (DE-588)4210413-0 gnd Deformation (DE-588)4070262-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Elastomechanik (DE-588)4014161-5 gnd Strukturelle Stabilität (DE-588)4295517-8 gnd |
subject_GND | (DE-588)4016918-2 (DE-588)4056693-6 (DE-588)4321722-9 (DE-588)4148995-0 (DE-588)4129367-8 (DE-588)4475269-6 (DE-588)4210413-0 (DE-588)4070262-5 (DE-588)4114528-8 (DE-588)4014161-5 (DE-588)4295517-8 |
title | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies |
title_auth | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies |
title_exact_search | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies |
title_full | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies by A. N. Guz |
title_fullStr | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies by A. N. Guz |
title_full_unstemmed | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies by A. N. Guz |
title_short | Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies |
title_sort | fundamentals of the three dimensional theory of stability of deformable bodies |
topic | Engineering Continuum Mechanics and Mechanics of Materials Structural Mechanics Computational Intelligence Mechanics Computational intelligence Continuum mechanics Structural mechanics Festkörper (DE-588)4016918-2 gnd Stabilität (DE-588)4056693-6 gnd Dimension 3 (DE-588)4321722-9 gnd Deformationsverhalten (DE-588)4148995-0 gnd Festkörpermechanik (DE-588)4129367-8 gnd Dreidimensionales Modell (DE-588)4475269-6 gnd Dünnwandiges Bauelement (DE-588)4210413-0 gnd Deformation (DE-588)4070262-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Elastomechanik (DE-588)4014161-5 gnd Strukturelle Stabilität (DE-588)4295517-8 gnd |
topic_facet | Engineering Continuum Mechanics and Mechanics of Materials Structural Mechanics Computational Intelligence Mechanics Computational intelligence Continuum mechanics Structural mechanics Festkörper Stabilität Dimension 3 Deformationsverhalten Festkörpermechanik Dreidimensionales Modell Dünnwandiges Bauelement Deformation Mathematisches Modell Elastomechanik Strukturelle Stabilität |
url | https://doi.org/10.1007/978-3-540-69633-9 |
work_keys_str_mv | AT guzan fundamentalsofthethreedimensionaltheoryofstabilityofdeformablebodies |