Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems:
Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such proble...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1984
|
Schriftenreihe: | Lecture Notes in Engineering
7 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field |
Beschreibung: | 1 Online-Ressource (IV, 173 p) |
ISBN: | 9783642823305 |
DOI: | 10.1007/978-3-642-82330-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187887 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1984 |||| o||u| ||||||eng d | ||
020 | |a 9783642823305 |9 978-3-642-82330-5 | ||
024 | 7 | |a 10.1007/978-3-642-82330-5 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-82330-5 | ||
035 | |a (OCoLC)863817819 | ||
035 | |a (DE-599)BVBBV045187887 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a SK 640 |0 (DE-625)143250: |2 rvk | ||
100 | 1 | |a Ingham, Derek B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems |c by Derek B. Ingham, Mark A. Kelmanson |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1984 | |
300 | |a 1 Online-Ressource (IV, 173 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Engineering |v 7 | |
520 | |a Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Nonlinear Dynamics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Difference equations | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Randelemente-Methode |0 (DE-588)4076508-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Randelemente-Methode |0 (DE-588)4076508-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kelmanson, Mark A. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540136460 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-82330-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030577064 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-82330-5 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178880543588352 |
---|---|
any_adam_object | |
author | Ingham, Derek B. Kelmanson, Mark A. |
author_facet | Ingham, Derek B. Kelmanson, Mark A. |
author_role | aut aut |
author_sort | Ingham, Derek B. |
author_variant | d b i db dbi m a k ma mak |
building | Verbundindex |
bvnumber | BV045187887 |
classification_rvk | SK 640 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-82330-5 (OCoLC)863817819 (DE-599)BVBBV045187887 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-82330-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03545nmm a2200565zcb4500</leader><controlfield tag="001">BV045187887</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642823305</subfield><subfield code="9">978-3-642-82330-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-82330-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-82330-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863817819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187887</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 640</subfield><subfield code="0">(DE-625)143250:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ingham, Derek B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems</subfield><subfield code="c">by Derek B. Ingham, Mark A. Kelmanson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IV, 173 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">7</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelmanson, Mark A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540136460</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-82330-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030577064</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-82330-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187887 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:00Z |
institution | BVB |
isbn | 9783642823305 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030577064 |
oclc_num | 863817819 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (IV, 173 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Engineering |
spelling | Ingham, Derek B. Verfasser aut Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems by Derek B. Ingham, Mark A. Kelmanson Berlin, Heidelberg Springer Berlin Heidelberg 1984 1 Online-Ressource (IV, 173 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Engineering 7 Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field Engineering Appl.Mathematics/Computational Methods of Engineering Difference and Functional Equations Nonlinear Dynamics Difference equations Functional equations Statistical physics Applied mathematics Engineering mathematics Randelemente-Methode (DE-588)4076508-8 gnd rswk-swf Randelemente-Methode (DE-588)4076508-8 s 1\p DE-604 Kelmanson, Mark A. aut Erscheint auch als Druck-Ausgabe 9783540136460 https://doi.org/10.1007/978-3-642-82330-5 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ingham, Derek B. Kelmanson, Mark A. Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems Engineering Appl.Mathematics/Computational Methods of Engineering Difference and Functional Equations Nonlinear Dynamics Difference equations Functional equations Statistical physics Applied mathematics Engineering mathematics Randelemente-Methode (DE-588)4076508-8 gnd |
subject_GND | (DE-588)4076508-8 |
title | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems |
title_auth | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems |
title_exact_search | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems |
title_full | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems by Derek B. Ingham, Mark A. Kelmanson |
title_fullStr | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems by Derek B. Ingham, Mark A. Kelmanson |
title_full_unstemmed | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems by Derek B. Ingham, Mark A. Kelmanson |
title_short | Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems |
title_sort | boundary integral equation analyses of singular potential and biharmonic problems |
topic | Engineering Appl.Mathematics/Computational Methods of Engineering Difference and Functional Equations Nonlinear Dynamics Difference equations Functional equations Statistical physics Applied mathematics Engineering mathematics Randelemente-Methode (DE-588)4076508-8 gnd |
topic_facet | Engineering Appl.Mathematics/Computational Methods of Engineering Difference and Functional Equations Nonlinear Dynamics Difference equations Functional equations Statistical physics Applied mathematics Engineering mathematics Randelemente-Methode |
url | https://doi.org/10.1007/978-3-642-82330-5 |
work_keys_str_mv | AT inghamderekb boundaryintegralequationanalysesofsingularpotentialandbiharmonicproblems AT kelmansonmarka boundaryintegralequationanalysesofsingularpotentialandbiharmonicproblems |