Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation
Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardw...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1995
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science
314 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained. Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips. Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation. Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses |
Beschreibung: | 1 Online-Ressource (XIII, 238 p) |
ISBN: | 9781461523376 |
DOI: | 10.1007/978-1-4615-2337-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187870 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461523376 |9 978-1-4615-2337-6 | ||
024 | 7 | |a 10.1007/978-1-4615-2337-6 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-2337-6 | ||
035 | |a (OCoLC)1053827577 | ||
035 | |a (DE-599)BVBBV045187870 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.3815 |2 23 | |
100 | 1 | |a Annema, Anne-Johan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Feed-Forward Neural Networks |b Vector Decomposition Analysis, Modelling and Analog Implementation |c by Anne-Johan Annema |
264 | 1 | |a Boston, MA |b Springer US |c 1995 | |
300 | |a 1 Online-Ressource (XIII, 238 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science |v 314 | |
520 | |a Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained. Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips. Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation. Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Circuits and Systems | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Engineering | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Electrical engineering | |
650 | 4 | |a Electronic circuits | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Backpropagation-Algorithmus |0 (DE-588)4354627-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Backpropagation-Algorithmus |0 (DE-588)4354627-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461359906 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-2337-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030577047 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4615-2337-6 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178880492208128 |
---|---|
any_adam_object | |
author | Annema, Anne-Johan |
author_facet | Annema, Anne-Johan |
author_role | aut |
author_sort | Annema, Anne-Johan |
author_variant | a j a aja |
building | Verbundindex |
bvnumber | BV045187870 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-2337-6 (OCoLC)1053827577 (DE-599)BVBBV045187870 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4615-2337-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03456nmm a2200577zcb4500</leader><controlfield tag="001">BV045187870</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461523376</subfield><subfield code="9">978-1-4615-2337-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-2337-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-2337-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053827577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187870</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Annema, Anne-Johan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feed-Forward Neural Networks</subfield><subfield code="b">Vector Decomposition Analysis, Modelling and Analog Implementation</subfield><subfield code="c">by Anne-Johan Annema</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 238 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">314</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained. Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips. Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation. Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits and Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuits</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Backpropagation-Algorithmus</subfield><subfield code="0">(DE-588)4354627-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Backpropagation-Algorithmus</subfield><subfield code="0">(DE-588)4354627-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461359906</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-2337-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030577047</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-2337-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV045187870 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:00Z |
institution | BVB |
isbn | 9781461523376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030577047 |
oclc_num | 1053827577 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIII, 238 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science |
spelling | Annema, Anne-Johan Verfasser aut Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation by Anne-Johan Annema Boston, MA Springer US 1995 1 Online-Ressource (XIII, 238 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science 314 Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained. Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips. Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation. Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Backpropagation-Algorithmus (DE-588)4354627-4 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Neuronales Netz (DE-588)4226127-2 s Backpropagation-Algorithmus (DE-588)4354627-4 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9781461359906 https://doi.org/10.1007/978-1-4615-2337-6 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Annema, Anne-Johan Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits Neuronales Netz (DE-588)4226127-2 gnd Backpropagation-Algorithmus (DE-588)4354627-4 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4354627-4 (DE-588)4113937-9 |
title | Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation |
title_auth | Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation |
title_exact_search | Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation |
title_full | Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation by Anne-Johan Annema |
title_fullStr | Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation by Anne-Johan Annema |
title_full_unstemmed | Feed-Forward Neural Networks Vector Decomposition Analysis, Modelling and Analog Implementation by Anne-Johan Annema |
title_short | Feed-Forward Neural Networks |
title_sort | feed forward neural networks vector decomposition analysis modelling and analog implementation |
title_sub | Vector Decomposition Analysis, Modelling and Analog Implementation |
topic | Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits Neuronales Netz (DE-588)4226127-2 gnd Backpropagation-Algorithmus (DE-588)4354627-4 gnd |
topic_facet | Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits Neuronales Netz Backpropagation-Algorithmus Hochschulschrift |
url | https://doi.org/10.1007/978-1-4615-2337-6 |
work_keys_str_mv | AT annemaannejohan feedforwardneuralnetworksvectordecompositionanalysismodellingandanalogimplementation |