Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach
The purpose of this monograph is to present computationally efficient algorithms for solving basic problems in robot manipulator dynamics. In par ticular, the following problems of rigid-link open-chain manipulator dynam ics are considered : i) computation of inverse dynamics, ii) computation of f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1991
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors
131 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The purpose of this monograph is to present computationally efficient algorithms for solving basic problems in robot manipulator dynamics. In par ticular, the following problems of rigid-link open-chain manipulator dynam ics are considered : i) computation of inverse dynamics, ii) computation of forward dynamics, and iii) generation of linearized dynamic models. Com putationally efficient solutions of these problems are prerequisites for real time robot applications and simulations. Cartesian tensor analysis is the mathematical foundation on which the above mentioned computational algorithms are based. In particular, it is shown in this monograph that by exploiting the relationships between second order Cartesian tensors and their vector invariants, a number of new tensor vector identities can be obtained. These identities enrich the theory of Carte sian tensors and allow us to manipulate complex Cartesian tensor equations effuctively. Moreover, based on these identities the classical vector descrip tion for the Newton-Euler equations of rigid body motion are rewritten in an equivalent tensor formulation which is shown to have computational advan tages over the classical vector formulation. Thus, based on Cartesian tensor analysis, a conceptually simple, easy to implement and computationally efficient tensor methodology is presented in this monograph for studying classical rigid body dynamics. XlI Application of this tensor methodology to the dynamic analysis of rigid-link open-chain robot manipulators is simple and leads to an efficient fonnulation of the dynamic equations of motion |
Beschreibung: | 1 Online-Ressource (XII, 292 p) |
ISBN: | 9781461539520 |
DOI: | 10.1007/978-1-4615-3952-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187828 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781461539520 |9 978-1-4615-3952-0 | ||
024 | 7 | |a 10.1007/978-1-4615-3952-0 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-3952-0 | ||
035 | |a (OCoLC)1053819616 | ||
035 | |a (DE-599)BVBBV045187828 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 629.8 |2 23 | |
100 | 1 | |a Balafoutis, C. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamic Analysis of Robot Manipulators |b A Cartesian Tensor Approach |c by C. A. Balafoutis, R. V. Patel |
264 | 1 | |a Boston, MA |b Springer US |c 1991 | |
300 | |a 1 Online-Ressource (XII, 292 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |v 131 | |
520 | |a The purpose of this monograph is to present computationally efficient algorithms for solving basic problems in robot manipulator dynamics. In par ticular, the following problems of rigid-link open-chain manipulator dynam ics are considered : i) computation of inverse dynamics, ii) computation of forward dynamics, and iii) generation of linearized dynamic models. Com putationally efficient solutions of these problems are prerequisites for real time robot applications and simulations. Cartesian tensor analysis is the mathematical foundation on which the above mentioned computational algorithms are based. In particular, it is shown in this monograph that by exploiting the relationships between second order Cartesian tensors and their vector invariants, a number of new tensor vector identities can be obtained. These identities enrich the theory of Carte sian tensors and allow us to manipulate complex Cartesian tensor equations effuctively. Moreover, based on these identities the classical vector descrip tion for the Newton-Euler equations of rigid body motion are rewritten in an equivalent tensor formulation which is shown to have computational advan tages over the classical vector formulation. Thus, based on Cartesian tensor analysis, a conceptually simple, easy to implement and computationally efficient tensor methodology is presented in this monograph for studying classical rigid body dynamics. XlI Application of this tensor methodology to the dynamic analysis of rigid-link open-chain robot manipulators is simple and leads to an efficient fonnulation of the dynamic equations of motion | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Control engineering | |
650 | 4 | |a Robotics | |
650 | 4 | |a Mechatronics | |
650 | 4 | |a Electrical engineering | |
700 | 1 | |a Patel, R. V. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461367642 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-3952-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030577005 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-3952-0 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178880405176320 |
---|---|
any_adam_object | |
author | Balafoutis, C. A. Patel, R. V. |
author_facet | Balafoutis, C. A. Patel, R. V. |
author_role | aut aut |
author_sort | Balafoutis, C. A. |
author_variant | c a b ca cab r v p rv rvp |
building | Verbundindex |
bvnumber | BV045187828 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-3952-0 (OCoLC)1053819616 (DE-599)BVBBV045187828 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1007/978-1-4615-3952-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03328nmm a2200481zcb4500</leader><controlfield tag="001">BV045187828</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461539520</subfield><subfield code="9">978-1-4615-3952-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-3952-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-3952-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053819616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187828</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balafoutis, C. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Analysis of Robot Manipulators</subfield><subfield code="b">A Cartesian Tensor Approach</subfield><subfield code="c">by C. A. Balafoutis, R. V. Patel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 292 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors</subfield><subfield code="v">131</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this monograph is to present computationally efficient algorithms for solving basic problems in robot manipulator dynamics. In par ticular, the following problems of rigid-link open-chain manipulator dynam ics are considered : i) computation of inverse dynamics, ii) computation of forward dynamics, and iii) generation of linearized dynamic models. Com putationally efficient solutions of these problems are prerequisites for real time robot applications and simulations. Cartesian tensor analysis is the mathematical foundation on which the above mentioned computational algorithms are based. In particular, it is shown in this monograph that by exploiting the relationships between second order Cartesian tensors and their vector invariants, a number of new tensor vector identities can be obtained. These identities enrich the theory of Carte sian tensors and allow us to manipulate complex Cartesian tensor equations effuctively. Moreover, based on these identities the classical vector descrip tion for the Newton-Euler equations of rigid body motion are rewritten in an equivalent tensor formulation which is shown to have computational advan tages over the classical vector formulation. Thus, based on Cartesian tensor analysis, a conceptually simple, easy to implement and computationally efficient tensor methodology is presented in this monograph for studying classical rigid body dynamics. XlI Application of this tensor methodology to the dynamic analysis of rigid-link open-chain robot manipulators is simple and leads to an efficient fonnulation of the dynamic equations of motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, R. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461367642</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-3952-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030577005</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-3952-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187828 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:00Z |
institution | BVB |
isbn | 9781461539520 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030577005 |
oclc_num | 1053819616 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 292 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |
spelling | Balafoutis, C. A. Verfasser aut Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach by C. A. Balafoutis, R. V. Patel Boston, MA Springer US 1991 1 Online-Ressource (XII, 292 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors 131 The purpose of this monograph is to present computationally efficient algorithms for solving basic problems in robot manipulator dynamics. In par ticular, the following problems of rigid-link open-chain manipulator dynam ics are considered : i) computation of inverse dynamics, ii) computation of forward dynamics, and iii) generation of linearized dynamic models. Com putationally efficient solutions of these problems are prerequisites for real time robot applications and simulations. Cartesian tensor analysis is the mathematical foundation on which the above mentioned computational algorithms are based. In particular, it is shown in this monograph that by exploiting the relationships between second order Cartesian tensors and their vector invariants, a number of new tensor vector identities can be obtained. These identities enrich the theory of Carte sian tensors and allow us to manipulate complex Cartesian tensor equations effuctively. Moreover, based on these identities the classical vector descrip tion for the Newton-Euler equations of rigid body motion are rewritten in an equivalent tensor formulation which is shown to have computational advan tages over the classical vector formulation. Thus, based on Cartesian tensor analysis, a conceptually simple, easy to implement and computationally efficient tensor methodology is presented in this monograph for studying classical rigid body dynamics. XlI Application of this tensor methodology to the dynamic analysis of rigid-link open-chain robot manipulators is simple and leads to an efficient fonnulation of the dynamic equations of motion Engineering Control, Robotics, Mechatronics Electrical Engineering Control engineering Robotics Mechatronics Electrical engineering Patel, R. V. aut Erscheint auch als Druck-Ausgabe 9781461367642 https://doi.org/10.1007/978-1-4615-3952-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Balafoutis, C. A. Patel, R. V. Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach Engineering Control, Robotics, Mechatronics Electrical Engineering Control engineering Robotics Mechatronics Electrical engineering |
title | Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach |
title_auth | Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach |
title_exact_search | Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach |
title_full | Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach by C. A. Balafoutis, R. V. Patel |
title_fullStr | Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach by C. A. Balafoutis, R. V. Patel |
title_full_unstemmed | Dynamic Analysis of Robot Manipulators A Cartesian Tensor Approach by C. A. Balafoutis, R. V. Patel |
title_short | Dynamic Analysis of Robot Manipulators |
title_sort | dynamic analysis of robot manipulators a cartesian tensor approach |
title_sub | A Cartesian Tensor Approach |
topic | Engineering Control, Robotics, Mechatronics Electrical Engineering Control engineering Robotics Mechatronics Electrical engineering |
topic_facet | Engineering Control, Robotics, Mechatronics Electrical Engineering Control engineering Robotics Mechatronics Electrical engineering |
url | https://doi.org/10.1007/978-1-4615-3952-0 |
work_keys_str_mv | AT balafoutisca dynamicanalysisofrobotmanipulatorsacartesiantensorapproach AT patelrv dynamicanalysisofrobotmanipulatorsacartesiantensorapproach |