Intuitionistic Fuzzy Sets: Theory and Applications
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) i...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Heidelberg
Physica-Verlag HD
1999
|
Schriftenreihe: | Studies in Fuzziness and Soft Computing
35 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character |
Beschreibung: | 1 Online-Ressource (XVIII, 324 p) |
ISBN: | 9783790818703 |
DOI: | 10.1007/978-3-7908-1870-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187298 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783790818703 |9 978-3-7908-1870-3 | ||
024 | 7 | |a 10.1007/978-3-7908-1870-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-7908-1870-3 | ||
035 | |a (OCoLC)1053825426 | ||
035 | |a (DE-599)BVBBV045187298 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
100 | 1 | |a Atanassov, Krassimir T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Intuitionistic Fuzzy Sets |b Theory and Applications |c by Krassimir T. Atanassov |
264 | 1 | |a Heidelberg |b Physica-Verlag HD |c 1999 | |
300 | |a 1 Online-Ressource (XVIII, 324 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in Fuzziness and Soft Computing |v 35 | |
520 | |a In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Discrete Mathematics | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Mathematical logic | |
650 | 4 | |a Discrete mathematics | |
650 | 4 | |a Economic theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783790824636 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7908-1870-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030576476 | ||
966 | e | |u https://doi.org/10.1007/978-3-7908-1870-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178879256985600 |
---|---|
any_adam_object | |
author | Atanassov, Krassimir T. |
author_facet | Atanassov, Krassimir T. |
author_role | aut |
author_sort | Atanassov, Krassimir T. |
author_variant | k t a kt kta |
building | Verbundindex |
bvnumber | BV045187298 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-7908-1870-3 (OCoLC)1053825426 (DE-599)BVBBV045187298 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-7908-1870-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02943nmm a2200493zcb4500</leader><controlfield tag="001">BV045187298</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783790818703</subfield><subfield code="9">978-3-7908-1870-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7908-1870-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-7908-1870-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053825426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187298</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atanassov, Krassimir T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intuitionistic Fuzzy Sets</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">by Krassimir T. Atanassov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg</subfield><subfield code="b">Physica-Verlag HD</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 324 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in Fuzziness and Soft Computing</subfield><subfield code="v">35</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783790824636</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7908-1870-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576476</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7908-1870-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187298 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:59Z |
institution | BVB |
isbn | 9783790818703 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576476 |
oclc_num | 1053825426 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVIII, 324 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Physica-Verlag HD |
record_format | marc |
series2 | Studies in Fuzziness and Soft Computing |
spelling | Atanassov, Krassimir T. Verfasser aut Intuitionistic Fuzzy Sets Theory and Applications by Krassimir T. Atanassov Heidelberg Physica-Verlag HD 1999 1 Online-Ressource (XVIII, 324 p) txt rdacontent c rdamedia cr rdacarrier Studies in Fuzziness and Soft Computing 35 In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character Mathematics Mathematical Logic and Foundations Discrete Mathematics Artificial Intelligence (incl. Robotics) Economic Theory/Quantitative Economics/Mathematical Methods Artificial intelligence Mathematical logic Discrete mathematics Economic theory Erscheint auch als Druck-Ausgabe 9783790824636 https://doi.org/10.1007/978-3-7908-1870-3 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Atanassov, Krassimir T. Intuitionistic Fuzzy Sets Theory and Applications Mathematics Mathematical Logic and Foundations Discrete Mathematics Artificial Intelligence (incl. Robotics) Economic Theory/Quantitative Economics/Mathematical Methods Artificial intelligence Mathematical logic Discrete mathematics Economic theory |
title | Intuitionistic Fuzzy Sets Theory and Applications |
title_auth | Intuitionistic Fuzzy Sets Theory and Applications |
title_exact_search | Intuitionistic Fuzzy Sets Theory and Applications |
title_full | Intuitionistic Fuzzy Sets Theory and Applications by Krassimir T. Atanassov |
title_fullStr | Intuitionistic Fuzzy Sets Theory and Applications by Krassimir T. Atanassov |
title_full_unstemmed | Intuitionistic Fuzzy Sets Theory and Applications by Krassimir T. Atanassov |
title_short | Intuitionistic Fuzzy Sets |
title_sort | intuitionistic fuzzy sets theory and applications |
title_sub | Theory and Applications |
topic | Mathematics Mathematical Logic and Foundations Discrete Mathematics Artificial Intelligence (incl. Robotics) Economic Theory/Quantitative Economics/Mathematical Methods Artificial intelligence Mathematical logic Discrete mathematics Economic theory |
topic_facet | Mathematics Mathematical Logic and Foundations Discrete Mathematics Artificial Intelligence (incl. Robotics) Economic Theory/Quantitative Economics/Mathematical Methods Artificial intelligence Mathematical logic Discrete mathematics Economic theory |
url | https://doi.org/10.1007/978-3-7908-1870-3 |
work_keys_str_mv | AT atanassovkrassimirt intuitionisticfuzzysetstheoryandapplications |