Adaptive Finite Element Solution Algorithm for the Euler Equations:
This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, c...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1991
|
Schriftenreihe: | Notes on Numerical Fluid Mechanics (NNFM)
32 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed |
Beschreibung: | 1 Online-Ressource (XII, 166 p. 106 illus) |
ISBN: | 9783322878793 |
DOI: | 10.1007/978-3-322-87879-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187261 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1991 |||| o||u| ||||||eng d | ||
020 | |a 9783322878793 |9 978-3-322-87879-3 | ||
024 | 7 | |a 10.1007/978-3-322-87879-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-322-87879-3 | ||
035 | |a (OCoLC)1053818756 | ||
035 | |a (DE-599)BVBBV045187261 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 620.1064 |2 23 | |
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
245 | 1 | 0 | |a Adaptive Finite Element Solution Algorithm for the Euler Equations |c edited by Richard A. Shapiro |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1991 | |
300 | |a 1 Online-Ressource (XII, 166 p. 106 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Notes on Numerical Fluid Mechanics (NNFM) |v 32 | |
520 | |a This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering Fluid Dynamics | |
650 | 4 | |a Physics, general | |
650 | 4 | |a Engineering | |
650 | 4 | |a Physics | |
650 | 4 | |a Fluid mechanics | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eulersche Bewegungsgleichungen |0 (DE-588)4219070-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eulersche Bewegungsgleichungen |0 (DE-588)4219070-8 |D s |
689 | 0 | 1 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Shapiro, Richard A. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783528076320 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-87879-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030576439 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-322-87879-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178879199313920 |
---|---|
any_adam_object | |
author2 | Shapiro, Richard A. |
author2_role | edt |
author2_variant | r a s ra ras |
author_facet | Shapiro, Richard A. |
building | Verbundindex |
bvnumber | BV045187261 |
classification_rvk | SK 910 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-322-87879-3 (OCoLC)1053818756 (DE-599)BVBBV045187261 |
dewey-full | 620.1064 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1064 |
dewey-search | 620.1064 |
dewey-sort | 3620.1064 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-87879-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03445nmm a2200529zcb4500</leader><controlfield tag="001">BV045187261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322878793</subfield><subfield code="9">978-3-322-87879-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-87879-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-322-87879-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053818756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1064</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Finite Element Solution Algorithm for the Euler Equations</subfield><subfield code="c">edited by Richard A. Shapiro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 166 p. 106 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Notes on Numerical Fluid Mechanics (NNFM)</subfield><subfield code="v">32</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering Fluid Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eulersche Bewegungsgleichungen</subfield><subfield code="0">(DE-588)4219070-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eulersche Bewegungsgleichungen</subfield><subfield code="0">(DE-588)4219070-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapiro, Richard A.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783528076320</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-87879-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576439</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-322-87879-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187261 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:59Z |
institution | BVB |
isbn | 9783322878793 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576439 |
oclc_num | 1053818756 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 166 p. 106 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Notes on Numerical Fluid Mechanics (NNFM) |
spelling | Adaptive Finite Element Solution Algorithm for the Euler Equations edited by Richard A. Shapiro Wiesbaden Vieweg+Teubner Verlag 1991 1 Online-Ressource (XII, 166 p. 106 illus) txt rdacontent c rdamedia cr rdacarrier Notes on Numerical Fluid Mechanics (NNFM) 32 This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed Engineering Engineering Fluid Dynamics Physics, general Physics Fluid mechanics Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Eulersche Bewegungsgleichungen (DE-588)4219070-8 gnd rswk-swf Eulersche Bewegungsgleichungen (DE-588)4219070-8 s Finite-Elemente-Methode (DE-588)4017233-8 s 1\p DE-604 Shapiro, Richard A. edt Erscheint auch als Druck-Ausgabe 9783528076320 https://doi.org/10.1007/978-3-322-87879-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Adaptive Finite Element Solution Algorithm for the Euler Equations Engineering Engineering Fluid Dynamics Physics, general Physics Fluid mechanics Finite-Elemente-Methode (DE-588)4017233-8 gnd Eulersche Bewegungsgleichungen (DE-588)4219070-8 gnd |
subject_GND | (DE-588)4017233-8 (DE-588)4219070-8 |
title | Adaptive Finite Element Solution Algorithm for the Euler Equations |
title_auth | Adaptive Finite Element Solution Algorithm for the Euler Equations |
title_exact_search | Adaptive Finite Element Solution Algorithm for the Euler Equations |
title_full | Adaptive Finite Element Solution Algorithm for the Euler Equations edited by Richard A. Shapiro |
title_fullStr | Adaptive Finite Element Solution Algorithm for the Euler Equations edited by Richard A. Shapiro |
title_full_unstemmed | Adaptive Finite Element Solution Algorithm for the Euler Equations edited by Richard A. Shapiro |
title_short | Adaptive Finite Element Solution Algorithm for the Euler Equations |
title_sort | adaptive finite element solution algorithm for the euler equations |
topic | Engineering Engineering Fluid Dynamics Physics, general Physics Fluid mechanics Finite-Elemente-Methode (DE-588)4017233-8 gnd Eulersche Bewegungsgleichungen (DE-588)4219070-8 gnd |
topic_facet | Engineering Engineering Fluid Dynamics Physics, general Physics Fluid mechanics Finite-Elemente-Methode Eulersche Bewegungsgleichungen |
url | https://doi.org/10.1007/978-3-322-87879-3 |
work_keys_str_mv | AT shapiroricharda adaptivefiniteelementsolutionalgorithmfortheeulerequations |