Source Coding Theory:
Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information i...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1990
|
Schriftenreihe: | The Kluwer International Series in Engineering and Computer Science, Communications and Information Theory
83 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information into a form that is a good approximation to the original. A code is optimal within some class if it achieves the best possible fidelity given whatever constraints are imposed on the code by the available channel. In theory, the primary constraint imposed on a code by the channel is its rate or resolution, the number of bits per second or per input symbol that it can transmit from sender to receiver. In the real world, complexity may be as important as rate. The origins and the basic form of much of the theory date from Shan non's classical development of noiseless source coding and source coding subject to a fidelity criterion (also called rate-distortion theory) [73] [74]. Shannon combined a probabilistic notion of information with limit theo rems from ergodic theory and a random coding technique to describe the optimal performance of systems with a constrained rate but with uncon strained complexity and delay. An alternative approach called asymptotic or high rate quantization theory based on different techniques and approx imations was introduced by Bennett at approximately the same time [4]. This approach constrained the delay but allowed the rate to grow large |
Beschreibung: | 1 Online-Ressource (XIV, 188 p) |
ISBN: | 9781461316435 |
DOI: | 10.1007/978-1-4613-1643-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187135 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781461316435 |9 978-1-4613-1643-5 | ||
024 | 7 | |a 10.1007/978-1-4613-1643-5 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4613-1643-5 | ||
035 | |a (OCoLC)1053699026 | ||
035 | |a (DE-599)BVBBV045187135 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.3 |2 23 | |
100 | 1 | |a Gray, Robert M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Source Coding Theory |c by Robert M. Gray |
264 | 1 | |a Boston, MA |b Springer US |c 1990 | |
300 | |a 1 Online-Ressource (XIV, 188 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Kluwer International Series in Engineering and Computer Science, Communications and Information Theory |v 83 | |
520 | |a Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information into a form that is a good approximation to the original. A code is optimal within some class if it achieves the best possible fidelity given whatever constraints are imposed on the code by the available channel. In theory, the primary constraint imposed on a code by the channel is its rate or resolution, the number of bits per second or per input symbol that it can transmit from sender to receiver. In the real world, complexity may be as important as rate. The origins and the basic form of much of the theory date from Shan non's classical development of noiseless source coding and source coding subject to a fidelity criterion (also called rate-distortion theory) [73] [74]. Shannon combined a probabilistic notion of information with limit theo rems from ergodic theory and a random coding technique to describe the optimal performance of systems with a constrained rate but with uncon strained complexity and delay. An alternative approach called asymptotic or high rate quantization theory based on different techniques and approx imations was introduced by Bennett at approximately the same time [4]. This approach constrained the delay but allowed the rate to grow large | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Electrical engineering | |
650 | 0 | 7 | |a Quellencodierung |0 (DE-588)4129166-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Codierungstheorie |0 (DE-588)4139405-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Codierungstheorie |0 (DE-588)4139405-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quellencodierung |0 (DE-588)4129166-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461289074 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-1643-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030576313 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4613-1643-5 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178878985404416 |
---|---|
any_adam_object | |
author | Gray, Robert M. |
author_facet | Gray, Robert M. |
author_role | aut |
author_sort | Gray, Robert M. |
author_variant | r m g rm rmg |
building | Verbundindex |
bvnumber | BV045187135 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4613-1643-5 (OCoLC)1053699026 (DE-599)BVBBV045187135 |
dewey-full | 621.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3 |
dewey-search | 621.3 |
dewey-sort | 3621.3 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4613-1643-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03539nmm a2200553zcb4500</leader><controlfield tag="001">BV045187135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461316435</subfield><subfield code="9">978-1-4613-1643-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-1643-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4613-1643-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053699026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gray, Robert M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Source Coding Theory</subfield><subfield code="c">by Robert M. Gray</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 188 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Kluwer International Series in Engineering and Computer Science, Communications and Information Theory</subfield><subfield code="v">83</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information into a form that is a good approximation to the original. A code is optimal within some class if it achieves the best possible fidelity given whatever constraints are imposed on the code by the available channel. In theory, the primary constraint imposed on a code by the channel is its rate or resolution, the number of bits per second or per input symbol that it can transmit from sender to receiver. In the real world, complexity may be as important as rate. The origins and the basic form of much of the theory date from Shan non's classical development of noiseless source coding and source coding subject to a fidelity criterion (also called rate-distortion theory) [73] [74]. Shannon combined a probabilistic notion of information with limit theo rems from ergodic theory and a random coding technique to describe the optimal performance of systems with a constrained rate but with uncon strained complexity and delay. An alternative approach called asymptotic or high rate quantization theory based on different techniques and approx imations was introduced by Bennett at approximately the same time [4]. This approach constrained the delay but allowed the rate to grow large</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quellencodierung</subfield><subfield code="0">(DE-588)4129166-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Codierungstheorie</subfield><subfield code="0">(DE-588)4139405-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Codierungstheorie</subfield><subfield code="0">(DE-588)4139405-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quellencodierung</subfield><subfield code="0">(DE-588)4129166-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461289074</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-1643-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576313</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-1643-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187135 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:58Z |
institution | BVB |
isbn | 9781461316435 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576313 |
oclc_num | 1053699026 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIV, 188 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer US |
record_format | marc |
series2 | The Kluwer International Series in Engineering and Computer Science, Communications and Information Theory |
spelling | Gray, Robert M. Verfasser aut Source Coding Theory by Robert M. Gray Boston, MA Springer US 1990 1 Online-Ressource (XIV, 188 p) txt rdacontent c rdamedia cr rdacarrier The Kluwer International Series in Engineering and Computer Science, Communications and Information Theory 83 Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information into a form that is a good approximation to the original. A code is optimal within some class if it achieves the best possible fidelity given whatever constraints are imposed on the code by the available channel. In theory, the primary constraint imposed on a code by the channel is its rate or resolution, the number of bits per second or per input symbol that it can transmit from sender to receiver. In the real world, complexity may be as important as rate. The origins and the basic form of much of the theory date from Shan non's classical development of noiseless source coding and source coding subject to a fidelity criterion (also called rate-distortion theory) [73] [74]. Shannon combined a probabilistic notion of information with limit theo rems from ergodic theory and a random coding technique to describe the optimal performance of systems with a constrained rate but with uncon strained complexity and delay. An alternative approach called asymptotic or high rate quantization theory based on different techniques and approx imations was introduced by Bennett at approximately the same time [4]. This approach constrained the delay but allowed the rate to grow large Engineering Electrical Engineering Signal, Image and Speech Processing Mathematics, general Mathematics Electrical engineering Quellencodierung (DE-588)4129166-9 gnd rswk-swf Codierungstheorie (DE-588)4139405-7 gnd rswk-swf Codierungstheorie (DE-588)4139405-7 s 1\p DE-604 Quellencodierung (DE-588)4129166-9 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9781461289074 https://doi.org/10.1007/978-1-4613-1643-5 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gray, Robert M. Source Coding Theory Engineering Electrical Engineering Signal, Image and Speech Processing Mathematics, general Mathematics Electrical engineering Quellencodierung (DE-588)4129166-9 gnd Codierungstheorie (DE-588)4139405-7 gnd |
subject_GND | (DE-588)4129166-9 (DE-588)4139405-7 |
title | Source Coding Theory |
title_auth | Source Coding Theory |
title_exact_search | Source Coding Theory |
title_full | Source Coding Theory by Robert M. Gray |
title_fullStr | Source Coding Theory by Robert M. Gray |
title_full_unstemmed | Source Coding Theory by Robert M. Gray |
title_short | Source Coding Theory |
title_sort | source coding theory |
topic | Engineering Electrical Engineering Signal, Image and Speech Processing Mathematics, general Mathematics Electrical engineering Quellencodierung (DE-588)4129166-9 gnd Codierungstheorie (DE-588)4139405-7 gnd |
topic_facet | Engineering Electrical Engineering Signal, Image and Speech Processing Mathematics, general Mathematics Electrical engineering Quellencodierung Codierungstheorie |
url | https://doi.org/10.1007/978-1-4613-1643-5 |
work_keys_str_mv | AT grayrobertm sourcecodingtheory |