Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing
Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvoluti...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1990
|
Schriftenreihe: | Signal Processing and Digital Filtering
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications |
Beschreibung: | 1 Online-Ressource (XIV, 227 p) |
ISBN: | 9781461233701 |
DOI: | 10.1007/978-1-4612-3370-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045186930 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781461233701 |9 978-1-4612-3370-1 | ||
024 | 7 | |a 10.1007/978-1-4612-3370-1 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4612-3370-1 | ||
035 | |a (OCoLC)1053799645 | ||
035 | |a (DE-599)BVBBV045186930 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.382 |2 23 | |
100 | 1 | |a Mendel, Jerry M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Maximum-Likelihood Deconvolution |b A Journey into Model-Based Signal Processing |c by Jerry M. Mendel |
264 | 1 | |a New York, NY |b Springer New York |c 1990 | |
300 | |a 1 Online-Ressource (XIV, 227 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Signal Processing and Digital Filtering | |
520 | |a Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Communications Engineering, Networks | |
650 | 4 | |a Engineering | |
650 | 4 | |a Electrical engineering | |
650 | 0 | 7 | |a Maximum-Likelihood-Schätzung |0 (DE-588)4194624-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Plausibilität |0 (DE-588)4174902-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Signalverarbeitung |0 (DE-588)4054947-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entfaltung |g Mathematik |0 (DE-588)4014854-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätztheorie |0 (DE-588)4121608-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Seismologie |0 (DE-588)4379341-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reflexionsseismik |0 (DE-588)4177335-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reflexionsseismik |0 (DE-588)4177335-4 |D s |
689 | 0 | 1 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 0 | 2 | |a Entfaltung |g Mathematik |0 (DE-588)4014854-3 |D s |
689 | 0 | 3 | |a Maximum-Likelihood-Schätzung |0 (DE-588)4194624-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 1 | 1 | |a Plausibilität |0 (DE-588)4174902-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Schätztheorie |0 (DE-588)4121608-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Seismologie |0 (DE-588)4379341-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461279853 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3370-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030576107 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4612-3370-1 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178878488379392 |
---|---|
any_adam_object | |
author | Mendel, Jerry M. |
author_facet | Mendel, Jerry M. |
author_role | aut |
author_sort | Mendel, Jerry M. |
author_variant | j m m jm jmm |
building | Verbundindex |
bvnumber | BV045186930 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4612-3370-1 (OCoLC)1053799645 (DE-599)BVBBV045186930 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4612-3370-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04485nmm a2200697zc 4500</leader><controlfield tag="001">BV045186930</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461233701</subfield><subfield code="9">978-1-4612-3370-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3370-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4612-3370-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053799645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186930</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mendel, Jerry M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximum-Likelihood Deconvolution</subfield><subfield code="b">A Journey into Model-Based Signal Processing</subfield><subfield code="c">by Jerry M. Mendel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 227 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Signal Processing and Digital Filtering</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communications Engineering, Networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maximum-Likelihood-Schätzung</subfield><subfield code="0">(DE-588)4194624-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plausibilität</subfield><subfield code="0">(DE-588)4174902-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entfaltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4014854-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Seismologie</subfield><subfield code="0">(DE-588)4379341-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reflexionsseismik</subfield><subfield code="0">(DE-588)4177335-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reflexionsseismik</subfield><subfield code="0">(DE-588)4177335-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Entfaltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4014854-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Maximum-Likelihood-Schätzung</subfield><subfield code="0">(DE-588)4194624-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Plausibilität</subfield><subfield code="0">(DE-588)4174902-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Seismologie</subfield><subfield code="0">(DE-588)4379341-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461279853</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3370-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576107</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4612-3370-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186930 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:58Z |
institution | BVB |
isbn | 9781461233701 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576107 |
oclc_num | 1053799645 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIV, 227 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer New York |
record_format | marc |
series2 | Signal Processing and Digital Filtering |
spelling | Mendel, Jerry M. Verfasser aut Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing by Jerry M. Mendel New York, NY Springer New York 1990 1 Online-Ressource (XIV, 227 p) txt rdacontent c rdamedia cr rdacarrier Signal Processing and Digital Filtering Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications Engineering Communications Engineering, Networks Electrical engineering Maximum-Likelihood-Schätzung (DE-588)4194624-8 gnd rswk-swf Plausibilität (DE-588)4174902-9 gnd rswk-swf Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf Entfaltung Mathematik (DE-588)4014854-3 gnd rswk-swf Schätztheorie (DE-588)4121608-8 gnd rswk-swf Seismologie (DE-588)4379341-1 gnd rswk-swf Reflexionsseismik (DE-588)4177335-4 gnd rswk-swf Reflexionsseismik (DE-588)4177335-4 s Signalverarbeitung (DE-588)4054947-1 s Entfaltung Mathematik (DE-588)4014854-3 s Maximum-Likelihood-Schätzung (DE-588)4194624-8 s 1\p DE-604 Plausibilität (DE-588)4174902-9 s 2\p DE-604 Schätztheorie (DE-588)4121608-8 s 3\p DE-604 Seismologie (DE-588)4379341-1 s 4\p DE-604 Erscheint auch als Druck-Ausgabe 9781461279853 https://doi.org/10.1007/978-1-4612-3370-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mendel, Jerry M. Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing Engineering Communications Engineering, Networks Electrical engineering Maximum-Likelihood-Schätzung (DE-588)4194624-8 gnd Plausibilität (DE-588)4174902-9 gnd Signalverarbeitung (DE-588)4054947-1 gnd Entfaltung Mathematik (DE-588)4014854-3 gnd Schätztheorie (DE-588)4121608-8 gnd Seismologie (DE-588)4379341-1 gnd Reflexionsseismik (DE-588)4177335-4 gnd |
subject_GND | (DE-588)4194624-8 (DE-588)4174902-9 (DE-588)4054947-1 (DE-588)4014854-3 (DE-588)4121608-8 (DE-588)4379341-1 (DE-588)4177335-4 |
title | Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing |
title_auth | Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing |
title_exact_search | Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing |
title_full | Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing by Jerry M. Mendel |
title_fullStr | Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing by Jerry M. Mendel |
title_full_unstemmed | Maximum-Likelihood Deconvolution A Journey into Model-Based Signal Processing by Jerry M. Mendel |
title_short | Maximum-Likelihood Deconvolution |
title_sort | maximum likelihood deconvolution a journey into model based signal processing |
title_sub | A Journey into Model-Based Signal Processing |
topic | Engineering Communications Engineering, Networks Electrical engineering Maximum-Likelihood-Schätzung (DE-588)4194624-8 gnd Plausibilität (DE-588)4174902-9 gnd Signalverarbeitung (DE-588)4054947-1 gnd Entfaltung Mathematik (DE-588)4014854-3 gnd Schätztheorie (DE-588)4121608-8 gnd Seismologie (DE-588)4379341-1 gnd Reflexionsseismik (DE-588)4177335-4 gnd |
topic_facet | Engineering Communications Engineering, Networks Electrical engineering Maximum-Likelihood-Schätzung Plausibilität Signalverarbeitung Entfaltung Mathematik Schätztheorie Seismologie Reflexionsseismik |
url | https://doi.org/10.1007/978-1-4612-3370-1 |
work_keys_str_mv | AT mendeljerrym maximumlikelihooddeconvolutionajourneyintomodelbasedsignalprocessing |