The Shallow Water Wave Equations: Formulation, Analysis and Application:
1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1986
|
Schriftenreihe: | Lecture Notes in Engineering
15 |
Schlagworte: | |
Online-Zugang: | BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | 1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant |
Beschreibung: | 1 Online-Ressource (XXVI, 188 p) |
ISBN: | 9783642826467 |
DOI: | 10.1007/978-3-642-82646-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186818 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1986 |||| o||u| ||||||eng d | ||
020 | |a 9783642826467 |9 978-3-642-82646-7 | ||
024 | 7 | |a 10.1007/978-3-642-82646-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-82646-7 | ||
035 | |a (OCoLC)863857101 | ||
035 | |a (DE-599)BVBBV045186818 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 624.15 |2 23 | |
084 | |a RB 10351 |0 (DE-625)142220:12704 |2 rvk | ||
100 | 1 | |a Kinnmark, Ingemar |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Shallow Water Wave Equations: Formulation, Analysis and Application |c by Ingemar Kinnmark |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1986 | |
300 | |a 1 Online-Ressource (XXVI, 188 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Engineering |v 15 | |
520 | |a 1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Geoengineering, Foundations, Hydraulics | |
650 | 4 | |a Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution | |
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering geology | |
650 | 4 | |a Engineering / Geology | |
650 | 4 | |a Foundations | |
650 | 4 | |a Hydraulics | |
650 | 4 | |a Water pollution | |
650 | 0 | 7 | |a Flachwasser |0 (DE-588)4121276-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wasserwelle |0 (DE-588)4136091-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wasserwelle |0 (DE-588)4136091-6 |D s |
689 | 0 | 1 | |a Flachwasser |0 (DE-588)4121276-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540160311 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-82646-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575995 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-82646-7 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178878213652480 |
---|---|
any_adam_object | |
author | Kinnmark, Ingemar |
author_facet | Kinnmark, Ingemar |
author_role | aut |
author_sort | Kinnmark, Ingemar |
author_variant | i k ik |
building | Verbundindex |
bvnumber | BV045186818 |
classification_rvk | RB 10351 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-82646-7 (OCoLC)863857101 (DE-599)BVBBV045186818 |
dewey-full | 624.15 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.15 |
dewey-search | 624.15 |
dewey-sort | 3624.15 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen Geographie |
doi_str_mv | 10.1007/978-3-642-82646-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03517nmm a2200565zcb4500</leader><controlfield tag="001">BV045186818</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642826467</subfield><subfield code="9">978-3-642-82646-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-82646-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-82646-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863857101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186818</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">624.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10351</subfield><subfield code="0">(DE-625)142220:12704</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kinnmark, Ingemar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Shallow Water Wave Equations: Formulation, Analysis and Application</subfield><subfield code="c">by Ingemar Kinnmark</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVI, 188 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">15</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geoengineering, Foundations, Hydraulics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering / Geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water pollution</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flachwasser</subfield><subfield code="0">(DE-588)4121276-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserwelle</subfield><subfield code="0">(DE-588)4136091-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserwelle</subfield><subfield code="0">(DE-588)4136091-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Flachwasser</subfield><subfield code="0">(DE-588)4121276-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540160311</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-82646-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575995</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-82646-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186818 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:58Z |
institution | BVB |
isbn | 9783642826467 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575995 |
oclc_num | 863857101 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XXVI, 188 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Engineering |
spelling | Kinnmark, Ingemar Verfasser aut The Shallow Water Wave Equations: Formulation, Analysis and Application by Ingemar Kinnmark Berlin, Heidelberg Springer Berlin Heidelberg 1986 1 Online-Ressource (XXVI, 188 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Engineering 15 1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant Engineering Geoengineering, Foundations, Hydraulics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Engineering geology Engineering / Geology Foundations Hydraulics Water pollution Flachwasser (DE-588)4121276-9 gnd rswk-swf Wasserwelle (DE-588)4136091-6 gnd rswk-swf Wasserwelle (DE-588)4136091-6 s Flachwasser (DE-588)4121276-9 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9783540160311 https://doi.org/10.1007/978-3-642-82646-7 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kinnmark, Ingemar The Shallow Water Wave Equations: Formulation, Analysis and Application Engineering Geoengineering, Foundations, Hydraulics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Engineering geology Engineering / Geology Foundations Hydraulics Water pollution Flachwasser (DE-588)4121276-9 gnd Wasserwelle (DE-588)4136091-6 gnd |
subject_GND | (DE-588)4121276-9 (DE-588)4136091-6 |
title | The Shallow Water Wave Equations: Formulation, Analysis and Application |
title_auth | The Shallow Water Wave Equations: Formulation, Analysis and Application |
title_exact_search | The Shallow Water Wave Equations: Formulation, Analysis and Application |
title_full | The Shallow Water Wave Equations: Formulation, Analysis and Application by Ingemar Kinnmark |
title_fullStr | The Shallow Water Wave Equations: Formulation, Analysis and Application by Ingemar Kinnmark |
title_full_unstemmed | The Shallow Water Wave Equations: Formulation, Analysis and Application by Ingemar Kinnmark |
title_short | The Shallow Water Wave Equations: Formulation, Analysis and Application |
title_sort | the shallow water wave equations formulation analysis and application |
topic | Engineering Geoengineering, Foundations, Hydraulics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Engineering geology Engineering / Geology Foundations Hydraulics Water pollution Flachwasser (DE-588)4121276-9 gnd Wasserwelle (DE-588)4136091-6 gnd |
topic_facet | Engineering Geoengineering, Foundations, Hydraulics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Engineering geology Engineering / Geology Foundations Hydraulics Water pollution Flachwasser Wasserwelle |
url | https://doi.org/10.1007/978-3-642-82646-7 |
work_keys_str_mv | AT kinnmarkingemar theshallowwaterwaveequationsformulationanalysisandapplication |