The Shallow Water Wave Equations: Formulation, Analysis and Application:

1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo­ mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kinnmark, Ingemar (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1986
Schriftenreihe:Lecture Notes in Engineering 15
Schlagworte:
Online-Zugang:BTU01
URL des Erstveröffentlichers
Zusammenfassung:1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo­ mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele­ ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant
Beschreibung:1 Online-Ressource (XXVI, 188 p)
ISBN:9783642826467
DOI:10.1007/978-3-642-82646-7

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen