Filtering Techniques for Turbulent Flow Simulation:
1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990
|
Schriftenreihe: | Lecture Notes in Engineering
56 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | 1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal waters, as well as the design of cooling ponds and solar ponds, requires an ade quate quantitative description of turbulent flows. When the diffusion of some tracer (be it active, such as temperature or salinity, or passive, such as dissolved oxygen) is of relevance to a specific application, the proper determination of the effects of turbulent transport processes has paramount importance. Thus, for instance, the proper understanding of lake and reservoir dynamics requires, as a first step, the ability to simulate turbulent flows. Applications in other areas of geophysical research, such as meteorology and oceanography are easily identified and large in number. It should be stressed that, in this context, the analyst seeks predictive ability to a certain extent. Accordingly, the need for simulation models that closely resemble the natural processes to be repre sented has recently become more evident. Since the late 1960s considerable effort has been devoted to the development of models for the simulation of complex turbulent flows. This has resulted in the establishment of two approaches which have been, or 2 have the potential for being, applied to problems of engineering and geophysical interest |
Beschreibung: | 1 Online-Ressource (VIII, 397 p. 3 illus) |
ISBN: | 9783642840913 |
DOI: | 10.1007/978-3-642-84091-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186581 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783642840913 |9 978-3-642-84091-3 | ||
024 | 7 | |a 10.1007/978-3-642-84091-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-84091-3 | ||
035 | |a (OCoLC)1184501423 | ||
035 | |a (DE-599)BVBBV045186581 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a UF 4300 |0 (DE-625)145584: |2 rvk | ||
100 | 1 | |a Aldama, Alvaro A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Filtering Techniques for Turbulent Flow Simulation |c by Alvaro A. Aldama |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1990 | |
300 | |a 1 Online-Ressource (VIII, 397 p. 3 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Engineering |v 56 | |
520 | |a 1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal waters, as well as the design of cooling ponds and solar ponds, requires an ade quate quantitative description of turbulent flows. When the diffusion of some tracer (be it active, such as temperature or salinity, or passive, such as dissolved oxygen) is of relevance to a specific application, the proper determination of the effects of turbulent transport processes has paramount importance. Thus, for instance, the proper understanding of lake and reservoir dynamics requires, as a first step, the ability to simulate turbulent flows. Applications in other areas of geophysical research, such as meteorology and oceanography are easily identified and large in number. It should be stressed that, in this context, the analyst seeks predictive ability to a certain extent. Accordingly, the need for simulation models that closely resemble the natural processes to be repre sented has recently become more evident. Since the late 1960s considerable effort has been devoted to the development of models for the simulation of complex turbulent flows. This has resulted in the establishment of two approaches which have been, or 2 have the potential for being, applied to problems of engineering and geophysical interest | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Earth Sciences, general | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Computer Hardware | |
650 | 4 | |a Software Engineering/Programming and Operating Systems | |
650 | 4 | |a Physics | |
650 | 4 | |a Earth sciences | |
650 | 4 | |a Computer hardware | |
650 | 4 | |a Software engineering | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Fluids | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Filterung |g Stochastik |0 (DE-588)4121267-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 0 | 1 | |a Filterung |g Stochastik |0 (DE-588)4121267-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540521372 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-84091-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575758 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-84091-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877740744704 |
---|---|
any_adam_object | |
author | Aldama, Alvaro A. |
author_facet | Aldama, Alvaro A. |
author_role | aut |
author_sort | Aldama, Alvaro A. |
author_variant | a a a aa aaa |
building | Verbundindex |
bvnumber | BV045186581 |
classification_rvk | UF 4300 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-84091-3 (OCoLC)1184501423 (DE-599)BVBBV045186581 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-84091-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03809nmm a2200637zcb4500</leader><controlfield tag="001">BV045186581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642840913</subfield><subfield code="9">978-3-642-84091-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84091-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-84091-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184501423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4300</subfield><subfield code="0">(DE-625)145584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aldama, Alvaro A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Filtering Techniques for Turbulent Flow Simulation</subfield><subfield code="c">by Alvaro A. Aldama</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 397 p. 3 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">56</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal waters, as well as the design of cooling ponds and solar ponds, requires an ade quate quantitative description of turbulent flows. When the diffusion of some tracer (be it active, such as temperature or salinity, or passive, such as dissolved oxygen) is of relevance to a specific application, the proper determination of the effects of turbulent transport processes has paramount importance. Thus, for instance, the proper understanding of lake and reservoir dynamics requires, as a first step, the ability to simulate turbulent flows. Applications in other areas of geophysical research, such as meteorology and oceanography are easily identified and large in number. It should be stressed that, in this context, the analyst seeks predictive ability to a certain extent. Accordingly, the need for simulation models that closely resemble the natural processes to be repre sented has recently become more evident. Since the late 1960s considerable effort has been devoted to the development of models for the simulation of complex turbulent flows. This has resulted in the establishment of two approaches which have been, or 2 have the potential for being, applied to problems of engineering and geophysical interest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Hardware</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software Engineering/Programming and Operating Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer hardware</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Filterung</subfield><subfield code="g">Stochastik</subfield><subfield code="0">(DE-588)4121267-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Filterung</subfield><subfield code="g">Stochastik</subfield><subfield code="0">(DE-588)4121267-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540521372</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84091-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575758</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-84091-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186581 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9783642840913 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575758 |
oclc_num | 1184501423 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VIII, 397 p. 3 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Engineering |
spelling | Aldama, Alvaro A. Verfasser aut Filtering Techniques for Turbulent Flow Simulation by Alvaro A. Aldama Berlin, Heidelberg Springer Berlin Heidelberg 1990 1 Online-Ressource (VIII, 397 p. 3 illus) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Engineering 56 1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal waters, as well as the design of cooling ponds and solar ponds, requires an ade quate quantitative description of turbulent flows. When the diffusion of some tracer (be it active, such as temperature or salinity, or passive, such as dissolved oxygen) is of relevance to a specific application, the proper determination of the effects of turbulent transport processes has paramount importance. Thus, for instance, the proper understanding of lake and reservoir dynamics requires, as a first step, the ability to simulate turbulent flows. Applications in other areas of geophysical research, such as meteorology and oceanography are easily identified and large in number. It should be stressed that, in this context, the analyst seeks predictive ability to a certain extent. Accordingly, the need for simulation models that closely resemble the natural processes to be repre sented has recently become more evident. Since the late 1960s considerable effort has been devoted to the development of models for the simulation of complex turbulent flows. This has resulted in the establishment of two approaches which have been, or 2 have the potential for being, applied to problems of engineering and geophysical interest Physics Mechanics Earth Sciences, general Fluid- and Aerodynamics Appl.Mathematics/Computational Methods of Engineering Computer Hardware Software Engineering/Programming and Operating Systems Earth sciences Computer hardware Software engineering Fluids Applied mathematics Engineering mathematics Filterung Stochastik (DE-588)4121267-8 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 s Filterung Stochastik (DE-588)4121267-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9783540521372 https://doi.org/10.1007/978-3-642-84091-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aldama, Alvaro A. Filtering Techniques for Turbulent Flow Simulation Physics Mechanics Earth Sciences, general Fluid- and Aerodynamics Appl.Mathematics/Computational Methods of Engineering Computer Hardware Software Engineering/Programming and Operating Systems Earth sciences Computer hardware Software engineering Fluids Applied mathematics Engineering mathematics Filterung Stochastik (DE-588)4121267-8 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
subject_GND | (DE-588)4121267-8 (DE-588)4117265-6 |
title | Filtering Techniques for Turbulent Flow Simulation |
title_auth | Filtering Techniques for Turbulent Flow Simulation |
title_exact_search | Filtering Techniques for Turbulent Flow Simulation |
title_full | Filtering Techniques for Turbulent Flow Simulation by Alvaro A. Aldama |
title_fullStr | Filtering Techniques for Turbulent Flow Simulation by Alvaro A. Aldama |
title_full_unstemmed | Filtering Techniques for Turbulent Flow Simulation by Alvaro A. Aldama |
title_short | Filtering Techniques for Turbulent Flow Simulation |
title_sort | filtering techniques for turbulent flow simulation |
topic | Physics Mechanics Earth Sciences, general Fluid- and Aerodynamics Appl.Mathematics/Computational Methods of Engineering Computer Hardware Software Engineering/Programming and Operating Systems Earth sciences Computer hardware Software engineering Fluids Applied mathematics Engineering mathematics Filterung Stochastik (DE-588)4121267-8 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
topic_facet | Physics Mechanics Earth Sciences, general Fluid- and Aerodynamics Appl.Mathematics/Computational Methods of Engineering Computer Hardware Software Engineering/Programming and Operating Systems Earth sciences Computer hardware Software engineering Fluids Applied mathematics Engineering mathematics Filterung Stochastik Turbulente Strömung |
url | https://doi.org/10.1007/978-3-642-84091-3 |
work_keys_str_mv | AT aldamaalvaroa filteringtechniquesforturbulentflowsimulation |