Competitively Inhibited Neural Networks for Adaptive Parameter Estimation:
Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1991
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems
111 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph |
Beschreibung: | 1 Online-Ressource (XIII, 142 p) |
ISBN: | 9781461540441 |
DOI: | 10.1007/978-1-4615-4044-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186536 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781461540441 |9 978-1-4615-4044-1 | ||
024 | 7 | |a 10.1007/978-1-4615-4044-1 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-4044-1 | ||
035 | |a (OCoLC)1184272755 | ||
035 | |a (DE-599)BVBBV045186536 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 006.3 |2 23 | |
100 | 1 | |a Lemmon, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Competitively Inhibited Neural Networks for Adaptive Parameter Estimation |c by Michael Lemmon |
264 | 1 | |a Boston, MA |b Springer US |c 1991 | |
300 | |a 1 Online-Ressource (XIII, 142 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems |v 111 | |
520 | |a Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Computer science | |
650 | 4 | |a Computers | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konkurrierende Wechselwirkung |0 (DE-588)4204509-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Konkurrierende Wechselwirkung |0 (DE-588)4204509-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461368090 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-4044-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575713 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4615-4044-1 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877626449920 |
---|---|
any_adam_object | |
author | Lemmon, Michael |
author_facet | Lemmon, Michael |
author_role | aut |
author_sort | Lemmon, Michael |
author_variant | m l ml |
building | Verbundindex |
bvnumber | BV045186536 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-4044-1 (OCoLC)1184272755 (DE-599)BVBBV045186536 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4615-4044-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03339nmm a2200517zcb4500</leader><controlfield tag="001">BV045186536</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461540441</subfield><subfield code="9">978-1-4615-4044-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-4044-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-4044-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184272755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186536</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lemmon, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Competitively Inhibited Neural Networks for Adaptive Parameter Estimation</subfield><subfield code="c">by Michael Lemmon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 142 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems</subfield><subfield code="v">111</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konkurrierende Wechselwirkung</subfield><subfield code="0">(DE-588)4204509-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konkurrierende Wechselwirkung</subfield><subfield code="0">(DE-588)4204509-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461368090</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-4044-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575713</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-4044-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186536 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9781461540441 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575713 |
oclc_num | 1184272755 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIII, 142 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems |
spelling | Lemmon, Michael Verfasser aut Competitively Inhibited Neural Networks for Adaptive Parameter Estimation by Michael Lemmon Boston, MA Springer US 1991 1 Online-Ressource (XIII, 142 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems 111 Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph Computer Science Artificial Intelligence (incl. Robotics) Theory of Computation Computer science Computers Artificial intelligence Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Konkurrierende Wechselwirkung (DE-588)4204509-5 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s Konkurrierende Wechselwirkung (DE-588)4204509-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9781461368090 https://doi.org/10.1007/978-1-4615-4044-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lemmon, Michael Competitively Inhibited Neural Networks for Adaptive Parameter Estimation Computer Science Artificial Intelligence (incl. Robotics) Theory of Computation Computer science Computers Artificial intelligence Neuronales Netz (DE-588)4226127-2 gnd Konkurrierende Wechselwirkung (DE-588)4204509-5 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4204509-5 |
title | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation |
title_auth | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation |
title_exact_search | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation |
title_full | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation by Michael Lemmon |
title_fullStr | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation by Michael Lemmon |
title_full_unstemmed | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation by Michael Lemmon |
title_short | Competitively Inhibited Neural Networks for Adaptive Parameter Estimation |
title_sort | competitively inhibited neural networks for adaptive parameter estimation |
topic | Computer Science Artificial Intelligence (incl. Robotics) Theory of Computation Computer science Computers Artificial intelligence Neuronales Netz (DE-588)4226127-2 gnd Konkurrierende Wechselwirkung (DE-588)4204509-5 gnd |
topic_facet | Computer Science Artificial Intelligence (incl. Robotics) Theory of Computation Computer science Computers Artificial intelligence Neuronales Netz Konkurrierende Wechselwirkung |
url | https://doi.org/10.1007/978-1-4615-4044-1 |
work_keys_str_mv | AT lemmonmichael competitivelyinhibitedneuralnetworksforadaptiveparameterestimation |