Neural Networks in Robotics:
Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robot...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1993
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors
202 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems |
Beschreibung: | 1 Online-Ressource (XII, 563 p) |
ISBN: | 9781461531807 |
DOI: | 10.1007/978-1-4615-3180-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186512 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461531807 |9 978-1-4615-3180-7 | ||
024 | 7 | |a 10.1007/978-1-4615-3180-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-3180-7 | ||
035 | |a (OCoLC)1184390329 | ||
035 | |a (DE-599)BVBBV045186512 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 629.892 |2 23 | |
245 | 1 | 0 | |a Neural Networks in Robotics |c edited by George A. Bekey, Kenneth Y. Goldberg |
264 | 1 | |a Boston, MA |b Springer US |c 1993 | |
300 | |a 1 Online-Ressource (XII, 563 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |v 202 | |
520 | |a Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Robotics and Automation | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Control engineering | |
650 | 4 | |a Robotics | |
650 | 4 | |a Mechatronics | |
650 | 4 | |a Automation | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Robotik |0 (DE-588)4261462-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Robotik |0 (DE-588)4261462-4 |D s |
689 | 0 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
700 | 1 | |a Bekey, George A. |4 edt | |
700 | 1 | |a Goldberg, Kenneth Y. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461363941 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-3180-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575689 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4615-3180-7 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877584506880 |
---|---|
any_adam_object | |
author2 | Bekey, George A. Goldberg, Kenneth Y. |
author2_role | edt edt |
author2_variant | g a b ga gab k y g ky kyg |
author_facet | Bekey, George A. Goldberg, Kenneth Y. |
building | Verbundindex |
bvnumber | BV045186512 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-3180-7 (OCoLC)1184390329 (DE-599)BVBBV045186512 |
dewey-full | 629.892 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.892 |
dewey-search | 629.892 |
dewey-sort | 3629.892 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1007/978-1-4615-3180-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04113nmm a2200661zcb4500</leader><controlfield tag="001">BV045186512</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461531807</subfield><subfield code="9">978-1-4615-3180-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-3180-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-3180-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184390329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186512</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.892</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural Networks in Robotics</subfield><subfield code="c">edited by George A. Bekey, Kenneth Y. Goldberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 563 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors</subfield><subfield code="v">202</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics and Automation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bekey, George A.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldberg, Kenneth Y.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461363941</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-3180-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575689</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-3180-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Konferenzschrift Aufsatzsammlung |
id | DE-604.BV045186512 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9781461531807 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575689 |
oclc_num | 1184390329 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 563 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |
spelling | Neural Networks in Robotics edited by George A. Bekey, Kenneth Y. Goldberg Boston, MA Springer US 1993 1 Online-Ressource (XII, 563 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors 202 Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems Engineering Robotics and Automation Control, Robotics, Mechatronics Statistical Physics, Dynamical Systems and Complexity Artificial Intelligence (incl. Robotics) Artificial intelligence Statistical physics Dynamical systems Control engineering Robotics Mechatronics Automation Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Robotik (DE-588)4261462-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Robotik (DE-588)4261462-4 s Neuronales Netz (DE-588)4226127-2 s 3\p DE-604 Bekey, George A. edt Goldberg, Kenneth Y. edt Erscheint auch als Druck-Ausgabe 9781461363941 https://doi.org/10.1007/978-1-4615-3180-7 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neural Networks in Robotics Engineering Robotics and Automation Control, Robotics, Mechatronics Statistical Physics, Dynamical Systems and Complexity Artificial Intelligence (incl. Robotics) Artificial intelligence Statistical physics Dynamical systems Control engineering Robotics Mechatronics Automation Neuronales Netz (DE-588)4226127-2 gnd Robotik (DE-588)4261462-4 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4261462-4 (DE-588)1071861417 (DE-588)4143413-4 |
title | Neural Networks in Robotics |
title_auth | Neural Networks in Robotics |
title_exact_search | Neural Networks in Robotics |
title_full | Neural Networks in Robotics edited by George A. Bekey, Kenneth Y. Goldberg |
title_fullStr | Neural Networks in Robotics edited by George A. Bekey, Kenneth Y. Goldberg |
title_full_unstemmed | Neural Networks in Robotics edited by George A. Bekey, Kenneth Y. Goldberg |
title_short | Neural Networks in Robotics |
title_sort | neural networks in robotics |
topic | Engineering Robotics and Automation Control, Robotics, Mechatronics Statistical Physics, Dynamical Systems and Complexity Artificial Intelligence (incl. Robotics) Artificial intelligence Statistical physics Dynamical systems Control engineering Robotics Mechatronics Automation Neuronales Netz (DE-588)4226127-2 gnd Robotik (DE-588)4261462-4 gnd |
topic_facet | Engineering Robotics and Automation Control, Robotics, Mechatronics Statistical Physics, Dynamical Systems and Complexity Artificial Intelligence (incl. Robotics) Artificial intelligence Statistical physics Dynamical systems Control engineering Robotics Mechatronics Automation Neuronales Netz Robotik Konferenzschrift Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4615-3180-7 |
work_keys_str_mv | AT bekeygeorgea neuralnetworksinrobotics AT goldbergkennethy neuralnetworksinrobotics |