Bayesian Modeling of Uncertainty in Low-Level Vision:

Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at C...

Full description

Saved in:
Bibliographic Details
Main Author: Szeliski, Richard (Author)
Format: Electronic eBook
Language:English
Published: Boston, MA Springer US 1989
Series:The Kluwer International in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors 79
Subjects:
Online Access:BTU01
Volltext
Summary:Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low­ level vision. Recently, probabilistic models have been proposed and used in vision. Sze­ liski's method has a few distinguishing features that make this monograph im­ portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion
Physical Description:1 Online-Ressource (XX, 198 p)
ISBN:9781461316374
DOI:10.1007/978-1-4613-1637-4

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text