Bayesian Modeling of Uncertainty in Low-Level Vision:
Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at C...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1989
|
Schriftenreihe: | The Kluwer International in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors
79 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion |
Beschreibung: | 1 Online-Ressource (XX, 198 p) |
ISBN: | 9781461316374 |
DOI: | 10.1007/978-1-4613-1637-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186372 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1989 |||| o||u| ||||||eng d | ||
020 | |a 9781461316374 |9 978-1-4613-1637-4 | ||
024 | 7 | |a 10.1007/978-1-4613-1637-4 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4613-1637-4 | ||
035 | |a (OCoLC)1184308452 | ||
035 | |a (DE-599)BVBBV045186372 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 006.6 |2 23 | |
100 | 1 | |a Szeliski, Richard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bayesian Modeling of Uncertainty in Low-Level Vision |c by Richard Szeliski |
264 | 1 | |a Boston, MA |b Springer US |c 1989 | |
300 | |a 1 Online-Ressource (XX, 198 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Kluwer International in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |v 79 | |
520 | |a Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computer science | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Control engineering | |
650 | 4 | |a Robotics | |
650 | 4 | |a Mechatronics | |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461289043 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-1637-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575549 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4613-1637-4 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877285662720 |
---|---|
any_adam_object | |
author | Szeliski, Richard |
author_facet | Szeliski, Richard |
author_role | aut |
author_sort | Szeliski, Richard |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV045186372 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4613-1637-4 (OCoLC)1184308452 (DE-599)BVBBV045186372 |
dewey-full | 006.6 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6 |
dewey-search | 006.6 |
dewey-sort | 16.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4613-1637-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03519nmm a2200565zcb4500</leader><controlfield tag="001">BV045186372</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461316374</subfield><subfield code="9">978-1-4613-1637-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-1637-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4613-1637-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184308452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186372</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Szeliski, Richard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian Modeling of Uncertainty in Low-Level Vision</subfield><subfield code="c">by Richard Szeliski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 198 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Kluwer International in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors</subfield><subfield code="v">79</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechatronics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461289043</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-1637-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575549</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-1637-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186372 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9781461316374 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575549 |
oclc_num | 1184308452 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XX, 198 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer US |
record_format | marc |
series2 | The Kluwer International in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |
spelling | Szeliski, Richard Verfasser aut Bayesian Modeling of Uncertainty in Low-Level Vision by Richard Szeliski Boston, MA Springer US 1989 1 Online-Ressource (XX, 198 p) txt rdacontent c rdamedia cr rdacarrier The Kluwer International in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors 79 Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion Computer Science Computer Imaging, Vision, Pattern Recognition and Graphics Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Computer graphics Control engineering Robotics Mechatronics Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 s Bayes-Verfahren (DE-588)4204326-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9781461289043 https://doi.org/10.1007/978-1-4613-1637-4 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Szeliski, Richard Bayesian Modeling of Uncertainty in Low-Level Vision Computer Science Computer Imaging, Vision, Pattern Recognition and Graphics Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Computer graphics Control engineering Robotics Mechatronics Bayes-Verfahren (DE-588)4204326-8 gnd Maschinelles Sehen (DE-588)4129594-8 gnd |
subject_GND | (DE-588)4204326-8 (DE-588)4129594-8 |
title | Bayesian Modeling of Uncertainty in Low-Level Vision |
title_auth | Bayesian Modeling of Uncertainty in Low-Level Vision |
title_exact_search | Bayesian Modeling of Uncertainty in Low-Level Vision |
title_full | Bayesian Modeling of Uncertainty in Low-Level Vision by Richard Szeliski |
title_fullStr | Bayesian Modeling of Uncertainty in Low-Level Vision by Richard Szeliski |
title_full_unstemmed | Bayesian Modeling of Uncertainty in Low-Level Vision by Richard Szeliski |
title_short | Bayesian Modeling of Uncertainty in Low-Level Vision |
title_sort | bayesian modeling of uncertainty in low level vision |
topic | Computer Science Computer Imaging, Vision, Pattern Recognition and Graphics Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Computer graphics Control engineering Robotics Mechatronics Bayes-Verfahren (DE-588)4204326-8 gnd Maschinelles Sehen (DE-588)4129594-8 gnd |
topic_facet | Computer Science Computer Imaging, Vision, Pattern Recognition and Graphics Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Computer graphics Control engineering Robotics Mechatronics Bayes-Verfahren Maschinelles Sehen |
url | https://doi.org/10.1007/978-1-4613-1637-4 |
work_keys_str_mv | AT szeliskirichard bayesianmodelingofuncertaintyinlowlevelvision |