Multiplicative Complexity, Convolution, and the DFT:
This book is intended to be a comprehensive reference to multiplicative com plexity theory as applied to digital signal processing computations. Although a few algorithms are included to illustrate the theory, I concentrated more on the develop ment of the theory itself. Howie Johnson's infec...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schriftenreihe: | Signal Processing and Digital Filtering
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This book is intended to be a comprehensive reference to multiplicative com plexity theory as applied to digital signal processing computations. Although a few algorithms are included to illustrate the theory, I concentrated more on the develop ment of the theory itself. Howie Johnson's infectious enthusiasm for designing efficient DfT algorithms got me interested in this subject. I am grateful to Prof. Sid Burrus for encouraging and supporting me in this effort. I would also like to thank Henrik Sorensen and Doug Jones for many stimulating discussions. lowe a great debt to Shmuel Winograd, who, almost singlehandedly, provided most of the key theoretical results that led to this present work. His monograph, Arithmetic Complexity o/Computations, introduced me to the mechanism behind the proofs of theorems in multiplicative complexity. enabling me to return to his earlier papers and appreciate the elegance of his methods for deriving the theory. The second key work that influenced me was the paper by Louis Auslander and Winograd on multiplicative complexity of semilinear systems defined by polynomials. After reading this paper, it was clear to me that this theory could be applied to many impor tant computational problems. These influences can be easily discerned in the present work |
Beschreibung: | 1 Online-Ressource (VIII, 155 p) |
ISBN: | 9781461239123 |
DOI: | 10.1007/978-1-4612-3912-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045186323 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461239123 |9 978-1-4612-3912-3 | ||
024 | 7 | |a 10.1007/978-1-4612-3912-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4612-3912-3 | ||
035 | |a (OCoLC)863792267 | ||
035 | |a (DE-599)BVBBV045186323 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 620.11 |2 23 | |
100 | 1 | |a Heideman, Michael T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multiplicative Complexity, Convolution, and the DFT |c by Michael T. Heideman |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (VIII, 155 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Signal Processing and Digital Filtering | |
520 | |a This book is intended to be a comprehensive reference to multiplicative com plexity theory as applied to digital signal processing computations. Although a few algorithms are included to illustrate the theory, I concentrated more on the develop ment of the theory itself. Howie Johnson's infectious enthusiasm for designing efficient DfT algorithms got me interested in this subject. I am grateful to Prof. Sid Burrus for encouraging and supporting me in this effort. I would also like to thank Henrik Sorensen and Doug Jones for many stimulating discussions. lowe a great debt to Shmuel Winograd, who, almost singlehandedly, provided most of the key theoretical results that led to this present work. His monograph, Arithmetic Complexity o/Computations, introduced me to the mechanism behind the proofs of theorems in multiplicative complexity. enabling me to return to his earlier papers and appreciate the elegance of his methods for deriving the theory. The second key work that influenced me was the paper by Louis Auslander and Winograd on multiplicative complexity of semilinear systems defined by polynomials. After reading this paper, it was clear to me that this theory could be applied to many impor tant computational problems. These influences can be easily discerned in the present work | ||
650 | 4 | |a Materials Science | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 4 | |a Materials science | |
650 | 0 | 7 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faltung |g Mathematik |0 (DE-588)4141470-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |D s |
689 | 0 | 1 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Diskrete Fourier-Transformation |0 (DE-588)4150175-5 |D s |
689 | 1 | 1 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Faltung |g Mathematik |0 (DE-588)4141470-6 |D s |
689 | 2 | 1 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Faltung |g Mathematik |0 (DE-588)4141470-6 |D s |
689 | 3 | 1 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461283997 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3912-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575500 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4612-3912-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877189193728 |
---|---|
any_adam_object | |
author | Heideman, Michael T. |
author_facet | Heideman, Michael T. |
author_role | aut |
author_sort | Heideman, Michael T. |
author_variant | m t h mt mth |
building | Verbundindex |
bvnumber | BV045186323 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4612-3912-3 (OCoLC)863792267 (DE-599)BVBBV045186323 |
dewey-full | 620.11 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11 |
dewey-search | 620.11 |
dewey-sort | 3620.11 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-1-4612-3912-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04145nmm a2200673zc 4500</leader><controlfield tag="001">BV045186323</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461239123</subfield><subfield code="9">978-1-4612-3912-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3912-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4612-3912-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863792267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186323</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heideman, Michael T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative Complexity, Convolution, and the DFT</subfield><subfield code="c">by Michael T. Heideman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 155 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Signal Processing and Digital Filtering</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is intended to be a comprehensive reference to multiplicative com plexity theory as applied to digital signal processing computations. Although a few algorithms are included to illustrate the theory, I concentrated more on the develop ment of the theory itself. Howie Johnson's infectious enthusiasm for designing efficient DfT algorithms got me interested in this subject. I am grateful to Prof. Sid Burrus for encouraging and supporting me in this effort. I would also like to thank Henrik Sorensen and Doug Jones for many stimulating discussions. lowe a great debt to Shmuel Winograd, who, almost singlehandedly, provided most of the key theoretical results that led to this present work. His monograph, Arithmetic Complexity o/Computations, introduced me to the mechanism behind the proofs of theorems in multiplicative complexity. enabling me to return to his earlier papers and appreciate the elegance of his methods for deriving the theory. The second key work that influenced me was the paper by Louis Auslander and Winograd on multiplicative complexity of semilinear systems defined by polynomials. After reading this paper, it was clear to me that this theory could be applied to many impor tant computational problems. These influences can be easily discerned in the present work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Diskrete Fourier-Transformation</subfield><subfield code="0">(DE-588)4150175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461283997</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3912-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575500</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4612-3912-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV045186323 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9781461239123 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575500 |
oclc_num | 863792267 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VIII, 155 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
series2 | Signal Processing and Digital Filtering |
spelling | Heideman, Michael T. Verfasser aut Multiplicative Complexity, Convolution, and the DFT by Michael T. Heideman New York, NY Springer New York 1988 1 Online-Ressource (VIII, 155 p) txt rdacontent c rdamedia cr rdacarrier Signal Processing and Digital Filtering This book is intended to be a comprehensive reference to multiplicative com plexity theory as applied to digital signal processing computations. Although a few algorithms are included to illustrate the theory, I concentrated more on the develop ment of the theory itself. Howie Johnson's infectious enthusiasm for designing efficient DfT algorithms got me interested in this subject. I am grateful to Prof. Sid Burrus for encouraging and supporting me in this effort. I would also like to thank Henrik Sorensen and Doug Jones for many stimulating discussions. lowe a great debt to Shmuel Winograd, who, almost singlehandedly, provided most of the key theoretical results that led to this present work. His monograph, Arithmetic Complexity o/Computations, introduced me to the mechanism behind the proofs of theorems in multiplicative complexity. enabling me to return to his earlier papers and appreciate the elegance of his methods for deriving the theory. The second key work that influenced me was the paper by Louis Auslander and Winograd on multiplicative complexity of semilinear systems defined by polynomials. After reading this paper, it was clear to me that this theory could be applied to many impor tant computational problems. These influences can be easily discerned in the present work Materials Science Characterization and Evaluation of Materials Materials science Diskrete Fourier-Transformation (DE-588)4150175-5 gnd rswk-swf Faltung Mathematik (DE-588)4141470-6 gnd rswk-swf Komplexitätstheorie (DE-588)4120591-1 gnd rswk-swf Berechnungskomplexität (DE-588)4134751-1 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Diskrete Fourier-Transformation (DE-588)4150175-5 s Komplexitätstheorie (DE-588)4120591-1 s 2\p DE-604 Berechnungskomplexität (DE-588)4134751-1 s 3\p DE-604 Faltung Mathematik (DE-588)4141470-6 s 4\p DE-604 5\p DE-604 Erscheint auch als Druck-Ausgabe 9781461283997 https://doi.org/10.1007/978-1-4612-3912-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heideman, Michael T. Multiplicative Complexity, Convolution, and the DFT Materials Science Characterization and Evaluation of Materials Materials science Diskrete Fourier-Transformation (DE-588)4150175-5 gnd Faltung Mathematik (DE-588)4141470-6 gnd Komplexitätstheorie (DE-588)4120591-1 gnd Berechnungskomplexität (DE-588)4134751-1 gnd |
subject_GND | (DE-588)4150175-5 (DE-588)4141470-6 (DE-588)4120591-1 (DE-588)4134751-1 (DE-588)4113937-9 |
title | Multiplicative Complexity, Convolution, and the DFT |
title_auth | Multiplicative Complexity, Convolution, and the DFT |
title_exact_search | Multiplicative Complexity, Convolution, and the DFT |
title_full | Multiplicative Complexity, Convolution, and the DFT by Michael T. Heideman |
title_fullStr | Multiplicative Complexity, Convolution, and the DFT by Michael T. Heideman |
title_full_unstemmed | Multiplicative Complexity, Convolution, and the DFT by Michael T. Heideman |
title_short | Multiplicative Complexity, Convolution, and the DFT |
title_sort | multiplicative complexity convolution and the dft |
topic | Materials Science Characterization and Evaluation of Materials Materials science Diskrete Fourier-Transformation (DE-588)4150175-5 gnd Faltung Mathematik (DE-588)4141470-6 gnd Komplexitätstheorie (DE-588)4120591-1 gnd Berechnungskomplexität (DE-588)4134751-1 gnd |
topic_facet | Materials Science Characterization and Evaluation of Materials Materials science Diskrete Fourier-Transformation Faltung Mathematik Komplexitätstheorie Berechnungskomplexität Hochschulschrift |
url | https://doi.org/10.1007/978-1-4612-3912-3 |
work_keys_str_mv | AT heidemanmichaelt multiplicativecomplexityconvolutionandthedft |