The Dual Reciprocity Boundary Element Method:
The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to prov...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1991
|
Schriftenreihe: | International Series on Computational Engineering
|
Schlagworte: | |
Online-Zugang: | DE-634 URL des Erstveröffentlichers |
Zusammenfassung: | The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to provide a complete problem solution in terms of boundary values only, with substantial savings in computer time and data preparation effort. An initial restriction of the BEM was that the fundamental solution to the original partial differential equation was required in order to obtain an equivalent boundary in tegral equation. Another was that non-homogeneous terms accounting for effects such as distributed loads were included in the formulation by means of domain integrals, thus making the technique lose the attraction of its "boundary-only" character. Many different approaches have been developed to overcome these problems. It is our opinion that the most successful so far is the dual reciprocity method (DRM), which is the subject matter of this book. The basic idea behind this approach is to employ a fundamental solution corresponding to a simpler equation and to treat the remaining terms, as well as other non-homogeneous terms in the original equation, through a procedure which involves a series expansion using global approximating functions and the application of reciprocity principles |
Beschreibung: | 1 Online-Ressource (XVI, 284 p) |
ISBN: | 9789401136907 |
DOI: | 10.1007/978-94-011-3690-7 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045186320 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1991 xx o|||| 00||| eng d | ||
020 | |a 9789401136907 |9 978-94-011-3690-7 | ||
024 | 7 | |a 10.1007/978-94-011-3690-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-94-011-3690-7 | ||
035 | |a (OCoLC)1053845124 | ||
035 | |a (DE-599)BVBBV045186320 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621 |2 23 | |
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Partridge, P. W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Dual Reciprocity Boundary Element Method |c by P. W. Partridge, C. A. Brebbia, L. C. Wrobel |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (XVI, 284 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a International Series on Computational Engineering | |
520 | |a The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to provide a complete problem solution in terms of boundary values only, with substantial savings in computer time and data preparation effort. An initial restriction of the BEM was that the fundamental solution to the original partial differential equation was required in order to obtain an equivalent boundary in tegral equation. Another was that non-homogeneous terms accounting for effects such as distributed loads were included in the formulation by means of domain integrals, thus making the technique lose the attraction of its "boundary-only" character. Many different approaches have been developed to overcome these problems. It is our opinion that the most successful so far is the dual reciprocity method (DRM), which is the subject matter of this book. The basic idea behind this approach is to employ a fundamental solution corresponding to a simpler equation and to treat the remaining terms, as well as other non-homogeneous terms in the original equation, through a procedure which involves a series expansion using global approximating functions and the application of reciprocity principles | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanical Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanical engineering | |
650 | 0 | 7 | |a Gegenseitigkeit |0 (DE-588)4156285-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randelemente-Methode |0 (DE-588)4076508-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Randelemente-Methode |0 (DE-588)4076508-8 |D s |
689 | 0 | 1 | |a Gegenseitigkeit |0 (DE-588)4156285-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Brebbia, C. A. |4 aut | |
700 | 1 | |a Wrobel, L. C. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781851667000 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-3690-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030575497 | |
966 | e | |u https://doi.org/10.1007/978-94-011-3690-7 |l DE-634 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1822663821896974336 |
---|---|
adam_text | |
any_adam_object | |
author | Partridge, P. W. Brebbia, C. A. Wrobel, L. C. |
author_facet | Partridge, P. W. Brebbia, C. A. Wrobel, L. C. |
author_role | aut aut aut |
author_sort | Partridge, P. W. |
author_variant | p w p pw pwp c a b ca cab l c w lc lcw |
building | Verbundindex |
bvnumber | BV045186320 |
classification_rvk | SK 920 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-94-011-3690-7 (OCoLC)1053845124 (DE-599)BVBBV045186320 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-3690-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV045186320</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401136907</subfield><subfield code="9">978-94-011-3690-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3690-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-94-011-3690-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053845124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186320</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Partridge, P. W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Dual Reciprocity Boundary Element Method</subfield><subfield code="c">by P. W. Partridge, C. A. Brebbia, L. C. Wrobel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 284 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International Series on Computational Engineering</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to provide a complete problem solution in terms of boundary values only, with substantial savings in computer time and data preparation effort. An initial restriction of the BEM was that the fundamental solution to the original partial differential equation was required in order to obtain an equivalent boundary in tegral equation. Another was that non-homogeneous terms accounting for effects such as distributed loads were included in the formulation by means of domain integrals, thus making the technique lose the attraction of its "boundary-only" character. Many different approaches have been developed to overcome these problems. It is our opinion that the most successful so far is the dual reciprocity method (DRM), which is the subject matter of this book. The basic idea behind this approach is to employ a fundamental solution corresponding to a simpler equation and to treat the remaining terms, as well as other non-homogeneous terms in the original equation, through a procedure which involves a series expansion using global approximating functions and the application of reciprocity principles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gegenseitigkeit</subfield><subfield code="0">(DE-588)4156285-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gegenseitigkeit</subfield><subfield code="0">(DE-588)4156285-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brebbia, C. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wrobel, L. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781851667000</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3690-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575497</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-011-3690-7</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186320 |
illustrated | Not Illustrated |
indexdate | 2025-01-30T09:01:13Z |
institution | BVB |
isbn | 9789401136907 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575497 |
oclc_num | 1053845124 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVI, 284 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
series2 | International Series on Computational Engineering |
spelling | Partridge, P. W. Verfasser aut The Dual Reciprocity Boundary Element Method by P. W. Partridge, C. A. Brebbia, L. C. Wrobel Dordrecht Springer Netherlands 1991 1 Online-Ressource (XVI, 284 p) txt rdacontent c rdamedia cr rdacarrier International Series on Computational Engineering The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to provide a complete problem solution in terms of boundary values only, with substantial savings in computer time and data preparation effort. An initial restriction of the BEM was that the fundamental solution to the original partial differential equation was required in order to obtain an equivalent boundary in tegral equation. Another was that non-homogeneous terms accounting for effects such as distributed loads were included in the formulation by means of domain integrals, thus making the technique lose the attraction of its "boundary-only" character. Many different approaches have been developed to overcome these problems. It is our opinion that the most successful so far is the dual reciprocity method (DRM), which is the subject matter of this book. The basic idea behind this approach is to employ a fundamental solution corresponding to a simpler equation and to treat the remaining terms, as well as other non-homogeneous terms in the original equation, through a procedure which involves a series expansion using global approximating functions and the application of reciprocity principles Engineering Mechanical Engineering Mechanical engineering Gegenseitigkeit (DE-588)4156285-9 gnd rswk-swf Randelemente-Methode (DE-588)4076508-8 gnd rswk-swf Randelemente-Methode (DE-588)4076508-8 s Gegenseitigkeit (DE-588)4156285-9 s 1\p DE-604 Brebbia, C. A. aut Wrobel, L. C. aut Erscheint auch als Druck-Ausgabe 9781851667000 https://doi.org/10.1007/978-94-011-3690-7 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Partridge, P. W. Brebbia, C. A. Wrobel, L. C. The Dual Reciprocity Boundary Element Method Engineering Mechanical Engineering Mechanical engineering Gegenseitigkeit (DE-588)4156285-9 gnd Randelemente-Methode (DE-588)4076508-8 gnd |
subject_GND | (DE-588)4156285-9 (DE-588)4076508-8 |
title | The Dual Reciprocity Boundary Element Method |
title_auth | The Dual Reciprocity Boundary Element Method |
title_exact_search | The Dual Reciprocity Boundary Element Method |
title_full | The Dual Reciprocity Boundary Element Method by P. W. Partridge, C. A. Brebbia, L. C. Wrobel |
title_fullStr | The Dual Reciprocity Boundary Element Method by P. W. Partridge, C. A. Brebbia, L. C. Wrobel |
title_full_unstemmed | The Dual Reciprocity Boundary Element Method by P. W. Partridge, C. A. Brebbia, L. C. Wrobel |
title_short | The Dual Reciprocity Boundary Element Method |
title_sort | the dual reciprocity boundary element method |
topic | Engineering Mechanical Engineering Mechanical engineering Gegenseitigkeit (DE-588)4156285-9 gnd Randelemente-Methode (DE-588)4076508-8 gnd |
topic_facet | Engineering Mechanical Engineering Mechanical engineering Gegenseitigkeit Randelemente-Methode |
url | https://doi.org/10.1007/978-94-011-3690-7 |
work_keys_str_mv | AT partridgepw thedualreciprocityboundaryelementmethod AT brebbiaca thedualreciprocityboundaryelementmethod AT wrobellc thedualreciprocityboundaryelementmethod |