Learning from Good and Bad Data:
This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extens...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1988
|
Schriftenreihe: | The Kluwer International Series in Engineering and Computer Sciences, Knowledge Representation, Learning and Expert Systems
47 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules |
Beschreibung: | 1 Online-Ressource (XVIII, 212 p) |
ISBN: | 9781461316855 |
DOI: | 10.1007/978-1-4613-1685-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045185916 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461316855 |9 978-1-4613-1685-5 | ||
024 | 7 | |a 10.1007/978-1-4613-1685-5 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4613-1685-5 | ||
035 | |a (OCoLC)1053794110 | ||
035 | |a (DE-599)BVBBV045185916 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 006.3 |2 23 | |
100 | 1 | |a Laird, Philip D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Learning from Good and Bad Data |c by Philip D. Laird |
264 | 1 | |a Boston, MA |b Springer US |c 1988 | |
300 | |a 1 Online-Ressource (XVIII, 212 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Kluwer International Series in Engineering and Computer Sciences, Knowledge Representation, Learning and Expert Systems |v 47 | |
520 | |a This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computer science | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Systemidentifikation |0 (DE-588)4121753-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Systemidentifikation |0 (DE-588)4121753-6 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461289517 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-1685-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575093 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4613-1685-5 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178876332507136 |
---|---|
any_adam_object | |
author | Laird, Philip D. |
author_facet | Laird, Philip D. |
author_role | aut |
author_sort | Laird, Philip D. |
author_variant | p d l pd pdl |
building | Verbundindex |
bvnumber | BV045185916 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4613-1685-5 (OCoLC)1053794110 (DE-599)BVBBV045185916 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4613-1685-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03540nmm a2200541zcb4500</leader><controlfield tag="001">BV045185916</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461316855</subfield><subfield code="9">978-1-4613-1685-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-1685-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4613-1685-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053794110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185916</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Laird, Philip D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning from Good and Bad Data</subfield><subfield code="c">by Philip D. Laird</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 212 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Kluwer International Series in Engineering and Computer Sciences, Knowledge Representation, Learning and Expert Systems</subfield><subfield code="v">47</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Systemidentifikation</subfield><subfield code="0">(DE-588)4121753-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Systemidentifikation</subfield><subfield code="0">(DE-588)4121753-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461289517</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-1685-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575093</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-1685-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045185916 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:56Z |
institution | BVB |
isbn | 9781461316855 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575093 |
oclc_num | 1053794110 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVIII, 212 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer US |
record_format | marc |
series2 | The Kluwer International Series in Engineering and Computer Sciences, Knowledge Representation, Learning and Expert Systems |
spelling | Laird, Philip D. Verfasser aut Learning from Good and Bad Data by Philip D. Laird Boston, MA Springer US 1988 1 Online-Ressource (XVIII, 212 p) txt rdacontent c rdamedia cr rdacarrier The Kluwer International Series in Engineering and Computer Sciences, Knowledge Representation, Learning and Expert Systems 47 This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules Computer Science Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Systemidentifikation (DE-588)4121753-6 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Systemidentifikation (DE-588)4121753-6 s Künstliche Intelligenz (DE-588)4033447-8 s 1\p DE-604 Maschinelles Lernen (DE-588)4193754-5 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9781461289517 https://doi.org/10.1007/978-1-4613-1685-5 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Laird, Philip D. Learning from Good and Bad Data Computer Science Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Systemidentifikation (DE-588)4121753-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4121753-6 (DE-588)4033447-8 (DE-588)4193754-5 |
title | Learning from Good and Bad Data |
title_auth | Learning from Good and Bad Data |
title_exact_search | Learning from Good and Bad Data |
title_full | Learning from Good and Bad Data by Philip D. Laird |
title_fullStr | Learning from Good and Bad Data by Philip D. Laird |
title_full_unstemmed | Learning from Good and Bad Data by Philip D. Laird |
title_short | Learning from Good and Bad Data |
title_sort | learning from good and bad data |
topic | Computer Science Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Systemidentifikation (DE-588)4121753-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Computer Science Artificial Intelligence (incl. Robotics) Computer science Artificial intelligence Systemidentifikation Künstliche Intelligenz Maschinelles Lernen |
url | https://doi.org/10.1007/978-1-4613-1685-5 |
work_keys_str_mv | AT lairdphilipd learningfromgoodandbaddata |