Introduction to Shannon Sampling and Interpolation Theory:
Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1991
|
Schriftenreihe: | Springer Texts in Electrical Engineering
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the fundamental questions addressed by sampling and interpolation theory. This book deals with understanding, generalizing, and extending the cardinal series of Shannon sampling theory. The fundamental form of this series states, remarkably, that a bandlimited signal is uniquely specified by its sufficiently close equally spaced samples. The contents of this book evolved from a set of lecture notes prepared for a graduate survey course on Shannon sampling and interpolation theory. The course was taught at the Department of Electrical Engineering at the University of Washington, Seattle. Each of the seven chapters in this book includes a list of references specific to that chapter. A sequel to this book will contain an extensive bibliography on the subject. The author has also opted to include solutions to selected exercises in the Appendix |
Beschreibung: | 1 Online-Ressource (XIII, 324 p) |
ISBN: | 9781461397083 |
DOI: | 10.1007/978-1-4613-9708-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045185855 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781461397083 |9 978-1-4613-9708-3 | ||
024 | 7 | |a 10.1007/978-1-4613-9708-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4613-9708-3 | ||
035 | |a (OCoLC)1053829980 | ||
035 | |a (DE-599)BVBBV045185855 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.3 |2 23 | |
100 | 1 | |a Marks, Robert J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Shannon Sampling and Interpolation Theory |c by Robert J. Marks |
264 | 1 | |a New York, NY |b Springer New York |c 1991 | |
300 | |a 1 Online-Ressource (XIII, 324 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Electrical Engineering | |
520 | |a Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the fundamental questions addressed by sampling and interpolation theory. This book deals with understanding, generalizing, and extending the cardinal series of Shannon sampling theory. The fundamental form of this series states, remarkably, that a bandlimited signal is uniquely specified by its sufficiently close equally spaced samples. The contents of this book evolved from a set of lecture notes prepared for a graduate survey course on Shannon sampling and interpolation theory. The course was taught at the Department of Electrical Engineering at the University of Washington, Seattle. Each of the seven chapters in this book includes a list of references specific to that chapter. A sequel to this book will contain an extensive bibliography on the subject. The author has also opted to include solutions to selected exercises in the Appendix | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Math. Applications in Chemistry | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Models and Principles | |
650 | 4 | |a Engineering | |
650 | 4 | |a Chemometrics | |
650 | 4 | |a Computers | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Electrical engineering | |
650 | 0 | 7 | |a Signalanalyse |0 (DE-588)4181260-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abtasttheorem |0 (DE-588)4258507-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stichprobe |0 (DE-588)4057502-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stichprobe |0 (DE-588)4057502-0 |D s |
689 | 0 | 1 | |a Signalanalyse |0 (DE-588)4181260-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Abtasttheorem |0 (DE-588)4258507-7 |D s |
689 | 1 | 1 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461397106 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-9708-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575032 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4613-9708-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178876210872320 |
---|---|
any_adam_object | |
author | Marks, Robert J. |
author_facet | Marks, Robert J. |
author_role | aut |
author_sort | Marks, Robert J. |
author_variant | r j m rj rjm |
building | Verbundindex |
bvnumber | BV045185855 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4613-9708-3 (OCoLC)1053829980 (DE-599)BVBBV045185855 |
dewey-full | 621.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3 |
dewey-search | 621.3 |
dewey-sort | 3621.3 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4613-9708-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03497nmm a2200637zc 4500</leader><controlfield tag="001">BV045185855</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461397083</subfield><subfield code="9">978-1-4613-9708-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-9708-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4613-9708-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053829980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185855</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marks, Robert J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Shannon Sampling and Interpolation Theory</subfield><subfield code="c">by Robert J. Marks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 324 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Electrical Engineering</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the fundamental questions addressed by sampling and interpolation theory. This book deals with understanding, generalizing, and extending the cardinal series of Shannon sampling theory. The fundamental form of this series states, remarkably, that a bandlimited signal is uniquely specified by its sufficiently close equally spaced samples. The contents of this book evolved from a set of lecture notes prepared for a graduate survey course on Shannon sampling and interpolation theory. The course was taught at the Department of Electrical Engineering at the University of Washington, Seattle. Each of the seven chapters in this book includes a list of references specific to that chapter. A sequel to this book will contain an extensive bibliography on the subject. The author has also opted to include solutions to selected exercises in the Appendix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models and Principles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalanalyse</subfield><subfield code="0">(DE-588)4181260-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abtasttheorem</subfield><subfield code="0">(DE-588)4258507-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stichprobe</subfield><subfield code="0">(DE-588)4057502-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stichprobe</subfield><subfield code="0">(DE-588)4057502-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Signalanalyse</subfield><subfield code="0">(DE-588)4181260-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Abtasttheorem</subfield><subfield code="0">(DE-588)4258507-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461397106</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-9708-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575032</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-9708-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045185855 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:56Z |
institution | BVB |
isbn | 9781461397083 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575032 |
oclc_num | 1053829980 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIII, 324 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Texts in Electrical Engineering |
spelling | Marks, Robert J. Verfasser aut Introduction to Shannon Sampling and Interpolation Theory by Robert J. Marks New York, NY Springer New York 1991 1 Online-Ressource (XIII, 324 p) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Electrical Engineering Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the fundamental questions addressed by sampling and interpolation theory. This book deals with understanding, generalizing, and extending the cardinal series of Shannon sampling theory. The fundamental form of this series states, remarkably, that a bandlimited signal is uniquely specified by its sufficiently close equally spaced samples. The contents of this book evolved from a set of lecture notes prepared for a graduate survey course on Shannon sampling and interpolation theory. The course was taught at the Department of Electrical Engineering at the University of Washington, Seattle. Each of the seven chapters in this book includes a list of references specific to that chapter. A sequel to this book will contain an extensive bibliography on the subject. The author has also opted to include solutions to selected exercises in the Appendix Engineering Electrical Engineering Math. Applications in Chemistry Computational Intelligence Models and Principles Chemometrics Computers Computational intelligence Electrical engineering Signalanalyse (DE-588)4181260-8 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Abtasttheorem (DE-588)4258507-7 gnd rswk-swf Stichprobe (DE-588)4057502-0 gnd rswk-swf Stichprobe (DE-588)4057502-0 s Signalanalyse (DE-588)4181260-8 s 1\p DE-604 Abtasttheorem (DE-588)4258507-7 s Interpolation (DE-588)4162121-9 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9781461397106 https://doi.org/10.1007/978-1-4613-9708-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marks, Robert J. Introduction to Shannon Sampling and Interpolation Theory Engineering Electrical Engineering Math. Applications in Chemistry Computational Intelligence Models and Principles Chemometrics Computers Computational intelligence Electrical engineering Signalanalyse (DE-588)4181260-8 gnd Interpolation (DE-588)4162121-9 gnd Abtasttheorem (DE-588)4258507-7 gnd Stichprobe (DE-588)4057502-0 gnd |
subject_GND | (DE-588)4181260-8 (DE-588)4162121-9 (DE-588)4258507-7 (DE-588)4057502-0 |
title | Introduction to Shannon Sampling and Interpolation Theory |
title_auth | Introduction to Shannon Sampling and Interpolation Theory |
title_exact_search | Introduction to Shannon Sampling and Interpolation Theory |
title_full | Introduction to Shannon Sampling and Interpolation Theory by Robert J. Marks |
title_fullStr | Introduction to Shannon Sampling and Interpolation Theory by Robert J. Marks |
title_full_unstemmed | Introduction to Shannon Sampling and Interpolation Theory by Robert J. Marks |
title_short | Introduction to Shannon Sampling and Interpolation Theory |
title_sort | introduction to shannon sampling and interpolation theory |
topic | Engineering Electrical Engineering Math. Applications in Chemistry Computational Intelligence Models and Principles Chemometrics Computers Computational intelligence Electrical engineering Signalanalyse (DE-588)4181260-8 gnd Interpolation (DE-588)4162121-9 gnd Abtasttheorem (DE-588)4258507-7 gnd Stichprobe (DE-588)4057502-0 gnd |
topic_facet | Engineering Electrical Engineering Math. Applications in Chemistry Computational Intelligence Models and Principles Chemometrics Computers Computational intelligence Electrical engineering Signalanalyse Interpolation Abtasttheorem Stichprobe |
url | https://doi.org/10.1007/978-1-4613-9708-3 |
work_keys_str_mv | AT marksrobertj introductiontoshannonsamplingandinterpolationtheory |