Stability of Finite and Infinite Dimensional Systems:
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1998
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science
455 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis |
Beschreibung: | 1 Online-Ressource (XVIII, 358 p) |
ISBN: | 9781461555759 |
DOI: | 10.1007/978-1-4615-5575-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045185777 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461555759 |9 978-1-4615-5575-9 | ||
024 | 7 | |a 10.1007/978-1-4615-5575-9 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-5575-9 | ||
035 | |a (OCoLC)1053814257 | ||
035 | |a (DE-599)BVBBV045185777 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
100 | 1 | |a Gil’, Michael I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stability of Finite and Infinite Dimensional Systems |c by Michael I. Gil’ |
264 | 1 | |a New York, NY |b Springer US |c 1998 | |
300 | |a 1 Online-Ressource (XVIII, 358 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science |v 455 | |
520 | |a The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a System theory | |
650 | 4 | |a Calculus of variations | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461375500 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5575-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030574955 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-5575-9 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178876044148736 |
---|---|
any_adam_object | |
author | Gil’, Michael I. |
author_facet | Gil’, Michael I. |
author_role | aut |
author_sort | Gil’, Michael I. |
author_variant | m i g mi mig |
building | Verbundindex |
bvnumber | BV045185777 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-5575-9 (OCoLC)1053814257 (DE-599)BVBBV045185777 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-5575-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02700nmm a2200469zcb4500</leader><controlfield tag="001">BV045185777</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461555759</subfield><subfield code="9">978-1-4615-5575-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5575-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-5575-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053814257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185777</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gil’, Michael I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability of Finite and Infinite Dimensional Systems</subfield><subfield code="c">by Michael I. Gil’</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 358 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">455</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461375500</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5575-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030574955</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-5575-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045185777 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:56Z |
institution | BVB |
isbn | 9781461555759 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030574955 |
oclc_num | 1053814257 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVIII, 358 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science |
spelling | Gil’, Michael I. Verfasser aut Stability of Finite and Infinite Dimensional Systems by Michael I. Gil’ New York, NY Springer US 1998 1 Online-Ressource (XVIII, 358 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science 455 The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis Mathematics Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Partial Differential Equations Partial differential equations System theory Calculus of variations Erscheint auch als Druck-Ausgabe 9781461375500 https://doi.org/10.1007/978-1-4615-5575-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gil’, Michael I. Stability of Finite and Infinite Dimensional Systems Mathematics Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Partial Differential Equations Partial differential equations System theory Calculus of variations |
title | Stability of Finite and Infinite Dimensional Systems |
title_auth | Stability of Finite and Infinite Dimensional Systems |
title_exact_search | Stability of Finite and Infinite Dimensional Systems |
title_full | Stability of Finite and Infinite Dimensional Systems by Michael I. Gil’ |
title_fullStr | Stability of Finite and Infinite Dimensional Systems by Michael I. Gil’ |
title_full_unstemmed | Stability of Finite and Infinite Dimensional Systems by Michael I. Gil’ |
title_short | Stability of Finite and Infinite Dimensional Systems |
title_sort | stability of finite and infinite dimensional systems |
topic | Mathematics Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Partial Differential Equations Partial differential equations System theory Calculus of variations |
topic_facet | Mathematics Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Partial Differential Equations Partial differential equations System theory Calculus of variations |
url | https://doi.org/10.1007/978-1-4615-5575-9 |
work_keys_str_mv | AT gilmichaeli stabilityoffiniteandinfinitedimensionalsystems |