Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics
Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter consti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1991
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter constitute one such class. An important aspect of these problems is, as a rule, a question of the variation of the solution when the parameter is varied. Hence, the method of continuing the solution with respect to a parameter is a natural and, to a certain degree, universal tool for analysis. This book includes details of practical problems and the results of applying this method to a certain class of nonlinear problems in the field of deformable solid mechanics. In the Introduction, two forms of the method are presented, namely continu ous continuation, based on the integration of a Cauchy problem with respect to a parameter using explicit schemes, and discrete continuation, implementing step wise processes with respect to a parameter with the iterative improvement of the solution at each step. Difficulties which arise in continuing the solution in the neighbourhood of singular points are discussed and the problem of choosing the continuation parameter is formulated |
Beschreibung: | 1 Online-Ressource (VIII, 262 p) |
ISBN: | 9789401137768 |
DOI: | 10.1007/978-94-011-3776-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045185389 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1991 |||| o||u| ||||||eng d | ||
020 | |a 9789401137768 |9 978-94-011-3776-8 | ||
024 | 7 | |a 10.1007/978-94-011-3776-8 |2 doi | |
035 | |a (ZDB-2-ENG)978-94-011-3776-8 | ||
035 | |a (OCoLC)1053820384 | ||
035 | |a (DE-599)BVBBV045185389 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 620.1 |2 23 | |
100 | 1 | |a Grigolyuk, E. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Problems of Nonlinear Deformation |b The Continuation Method Applied to Nonlinear Problems in Solid Mechanics |c by E. I. Grigolyuk, V. I. Shalashilin |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (VIII, 262 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter constitute one such class. An important aspect of these problems is, as a rule, a question of the variation of the solution when the parameter is varied. Hence, the method of continuing the solution with respect to a parameter is a natural and, to a certain degree, universal tool for analysis. This book includes details of practical problems and the results of applying this method to a certain class of nonlinear problems in the field of deformable solid mechanics. In the Introduction, two forms of the method are presented, namely continu ous continuation, based on the integration of a Cauchy problem with respect to a parameter using explicit schemes, and discrete continuation, implementing step wise processes with respect to a parameter with the iterative improvement of the solution at each step. Difficulties which arise in continuing the solution in the neighbourhood of singular points are discussed and the problem of choosing the continuation parameter is formulated | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Theoretical and Applied Mechanics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Civil Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mechanics, Applied | |
650 | 4 | |a Civil engineering | |
700 | 1 | |a Shalashilin, V. I. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789401056816 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-3776-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030574567 | ||
966 | e | |u https://doi.org/10.1007/978-94-011-3776-8 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178875226259456 |
---|---|
any_adam_object | |
author | Grigolyuk, E. I. Shalashilin, V. I. |
author_facet | Grigolyuk, E. I. Shalashilin, V. I. |
author_role | aut aut |
author_sort | Grigolyuk, E. I. |
author_variant | e i g ei eig v i s vi vis |
building | Verbundindex |
bvnumber | BV045185389 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-94-011-3776-8 (OCoLC)1053820384 (DE-599)BVBBV045185389 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-94-011-3776-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02895nmm a2200469zc 4500</leader><controlfield tag="001">BV045185389</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401137768</subfield><subfield code="9">978-94-011-3776-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3776-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-94-011-3776-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053820384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grigolyuk, E. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Problems of Nonlinear Deformation</subfield><subfield code="b">The Continuation Method Applied to Nonlinear Problems in Solid Mechanics</subfield><subfield code="c">by E. I. Grigolyuk, V. I. Shalashilin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 262 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter constitute one such class. An important aspect of these problems is, as a rule, a question of the variation of the solution when the parameter is varied. Hence, the method of continuing the solution with respect to a parameter is a natural and, to a certain degree, universal tool for analysis. This book includes details of practical problems and the results of applying this method to a certain class of nonlinear problems in the field of deformable solid mechanics. In the Introduction, two forms of the method are presented, namely continu ous continuation, based on the integration of a Cauchy problem with respect to a parameter using explicit schemes, and discrete continuation, implementing step wise processes with respect to a parameter with the iterative improvement of the solution at each step. Difficulties which arise in continuing the solution in the neighbourhood of singular points are discussed and the problem of choosing the continuation parameter is formulated</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Applied Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shalashilin, V. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789401056816</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3776-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030574567</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-011-3776-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045185389 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:55Z |
institution | BVB |
isbn | 9789401137768 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030574567 |
oclc_num | 1053820384 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VIII, 262 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Grigolyuk, E. I. Verfasser aut Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics by E. I. Grigolyuk, V. I. Shalashilin Dordrecht Springer Netherlands 1991 1 Online-Ressource (VIII, 262 p) txt rdacontent c rdamedia cr rdacarrier Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter constitute one such class. An important aspect of these problems is, as a rule, a question of the variation of the solution when the parameter is varied. Hence, the method of continuing the solution with respect to a parameter is a natural and, to a certain degree, universal tool for analysis. This book includes details of practical problems and the results of applying this method to a certain class of nonlinear problems in the field of deformable solid mechanics. In the Introduction, two forms of the method are presented, namely continu ous continuation, based on the integration of a Cauchy problem with respect to a parameter using explicit schemes, and discrete continuation, implementing step wise processes with respect to a parameter with the iterative improvement of the solution at each step. Difficulties which arise in continuing the solution in the neighbourhood of singular points are discussed and the problem of choosing the continuation parameter is formulated Engineering Theoretical and Applied Mechanics Mechanics Civil Engineering Mechanics, Applied Civil engineering Shalashilin, V. I. aut Erscheint auch als Druck-Ausgabe 9789401056816 https://doi.org/10.1007/978-94-011-3776-8 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Grigolyuk, E. I. Shalashilin, V. I. Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics Engineering Theoretical and Applied Mechanics Mechanics Civil Engineering Mechanics, Applied Civil engineering |
title | Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics |
title_auth | Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics |
title_exact_search | Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics |
title_full | Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics by E. I. Grigolyuk, V. I. Shalashilin |
title_fullStr | Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics by E. I. Grigolyuk, V. I. Shalashilin |
title_full_unstemmed | Problems of Nonlinear Deformation The Continuation Method Applied to Nonlinear Problems in Solid Mechanics by E. I. Grigolyuk, V. I. Shalashilin |
title_short | Problems of Nonlinear Deformation |
title_sort | problems of nonlinear deformation the continuation method applied to nonlinear problems in solid mechanics |
title_sub | The Continuation Method Applied to Nonlinear Problems in Solid Mechanics |
topic | Engineering Theoretical and Applied Mechanics Mechanics Civil Engineering Mechanics, Applied Civil engineering |
topic_facet | Engineering Theoretical and Applied Mechanics Mechanics Civil Engineering Mechanics, Applied Civil engineering |
url | https://doi.org/10.1007/978-94-011-3776-8 |
work_keys_str_mv | AT grigolyukei problemsofnonlineardeformationthecontinuationmethodappliedtononlinearproblemsinsolidmechanics AT shalashilinvi problemsofnonlineardeformationthecontinuationmethodappliedtononlinearproblemsinsolidmechanics |