Angular Momentum in Geophysical Turbulence: Continuum Spatial Averaging Method
Turbulence theory is one of the most intriguing parts of fluid mechanics and many outstanding scientists have tried to apply their knowledge to the development of the theory and to offer useful recommendations for solution of some practical problems. In this monograph the author attempts to integrat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2003
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Turbulence theory is one of the most intriguing parts of fluid mechanics and many outstanding scientists have tried to apply their knowledge to the development of the theory and to offer useful recommendations for solution of some practical problems. In this monograph the author attempts to integrate many specific approaches into the unified theory. The basic premise is the simple idea that a small eddy, that is an element of turbulent meso-structure, possesses its own dynamics as an object rotating with its own spin velocity and obeying the Newton dynamics of a finite body. A number of such eddies fills a coordinate cell, and the angular momentum balance has to be formulated for this spatial cell. If the cell coincides with a finite difference element at a numerical calculation and if the external length scale is large, this elementary volume can be considered as a differential one and a continuum parameterization has to be used. Nontrivial angular balance is a consequence of the asymmetrical Reynolds stress action at the oriented sides of an elementary volume. At first glance, the averaged dyad of velocity components is symmetrical, == However, if averaging is performed over the plane with normal nj, the principle of commutation is lost. As a result, the stress tensor asymmetry j is determined by other factors that participate in the angular momentum balance. This is the only possibility to determine a stress in engineering |
Beschreibung: | 1 Online-Ressource (IX, 245 p) |
ISBN: | 9789401701990 |
DOI: | 10.1007/978-94-017-0199-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045177658 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180911s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789401701990 |9 978-94-017-0199-0 | ||
024 | 7 | |a 10.1007/978-94-017-0199-0 |2 doi | |
035 | |a (ZDB-2-EES)978-94-017-0199-0 | ||
035 | |a (OCoLC)1053797435 | ||
035 | |a (DE-599)BVBBV045177658 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 526.1 |2 23 | |
082 | 0 | |a 550 |2 23 | |
100 | 1 | |a Nikolaevskiy, Victor N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Angular Momentum in Geophysical Turbulence |b Continuum Spatial Averaging Method |c by Victor N. Nikolaevskiy |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2003 | |
300 | |a 1 Online-Ressource (IX, 245 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Turbulence theory is one of the most intriguing parts of fluid mechanics and many outstanding scientists have tried to apply their knowledge to the development of the theory and to offer useful recommendations for solution of some practical problems. In this monograph the author attempts to integrate many specific approaches into the unified theory. The basic premise is the simple idea that a small eddy, that is an element of turbulent meso-structure, possesses its own dynamics as an object rotating with its own spin velocity and obeying the Newton dynamics of a finite body. A number of such eddies fills a coordinate cell, and the angular momentum balance has to be formulated for this spatial cell. If the cell coincides with a finite difference element at a numerical calculation and if the external length scale is large, this elementary volume can be considered as a differential one and a continuum parameterization has to be used. Nontrivial angular balance is a consequence of the asymmetrical Reynolds stress action at the oriented sides of an elementary volume. At first glance, the averaged dyad of velocity components is symmetrical, == However, if averaging is performed over the plane with normal nj, the principle of commutation is lost. As a result, the stress tensor asymmetry j is determined by other factors that participate in the angular momentum balance. This is the only possibility to determine a stress in engineering | ||
650 | 4 | |a Earth Sciences | |
650 | 4 | |a Geophysics/Geodesy | |
650 | 4 | |a Atmospheric Sciences | |
650 | 4 | |a Oceanography | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Earth sciences | |
650 | 4 | |a Geophysics | |
650 | 4 | |a Oceanography | |
650 | 4 | |a Atmospheric sciences | |
650 | 4 | |a Mathematical models | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789048164783 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0199-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-EES | ||
940 | 1 | |q ZDB-2-EES_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030566888 | ||
966 | e | |u https://doi.org/10.1007/978-94-017-0199-0 |l BTU01 |p ZDB-2-EES |q ZDB-2-EES_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178866912100352 |
---|---|
any_adam_object | |
author | Nikolaevskiy, Victor N. |
author_facet | Nikolaevskiy, Victor N. |
author_role | aut |
author_sort | Nikolaevskiy, Victor N. |
author_variant | v n n vn vnn |
building | Verbundindex |
bvnumber | BV045177658 |
collection | ZDB-2-EES |
ctrlnum | (ZDB-2-EES)978-94-017-0199-0 (OCoLC)1053797435 (DE-599)BVBBV045177658 |
dewey-full | 526.1 550 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 526 - Mathematical geography 550 - Earth sciences |
dewey-raw | 526.1 550 |
dewey-search | 526.1 550 |
dewey-sort | 3526.1 |
dewey-tens | 520 - Astronomy and allied sciences 550 - Earth sciences |
discipline | Physik Geologie / Paläontologie |
doi_str_mv | 10.1007/978-94-017-0199-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03108nmm a2200493zc 4500</leader><controlfield tag="001">BV045177658</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180911s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401701990</subfield><subfield code="9">978-94-017-0199-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0199-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-EES)978-94-017-0199-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053797435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045177658</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">526.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikolaevskiy, Victor N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Angular Momentum in Geophysical Turbulence</subfield><subfield code="b">Continuum Spatial Averaging Method</subfield><subfield code="c">by Victor N. Nikolaevskiy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 245 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Turbulence theory is one of the most intriguing parts of fluid mechanics and many outstanding scientists have tried to apply their knowledge to the development of the theory and to offer useful recommendations for solution of some practical problems. In this monograph the author attempts to integrate many specific approaches into the unified theory. The basic premise is the simple idea that a small eddy, that is an element of turbulent meso-structure, possesses its own dynamics as an object rotating with its own spin velocity and obeying the Newton dynamics of a finite body. A number of such eddies fills a coordinate cell, and the angular momentum balance has to be formulated for this spatial cell. If the cell coincides with a finite difference element at a numerical calculation and if the external length scale is large, this elementary volume can be considered as a differential one and a continuum parameterization has to be used. Nontrivial angular balance is a consequence of the asymmetrical Reynolds stress action at the oriented sides of an elementary volume. At first glance, the averaged dyad of velocity components is symmetrical, == However, if averaging is performed over the plane with normal nj, the principle of commutation is lost. As a result, the stress tensor asymmetry j is determined by other factors that participate in the angular momentum balance. This is the only possibility to determine a stress in engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789048164783</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0199-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-EES</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-EES_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030566888</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-017-0199-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-EES</subfield><subfield code="q">ZDB-2-EES_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045177658 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:47Z |
institution | BVB |
isbn | 9789401701990 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030566888 |
oclc_num | 1053797435 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (IX, 245 p) |
psigel | ZDB-2-EES ZDB-2-EES_Archiv ZDB-2-EES ZDB-2-EES_Archiv |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Nikolaevskiy, Victor N. Verfasser aut Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method by Victor N. Nikolaevskiy Dordrecht Springer Netherlands 2003 1 Online-Ressource (IX, 245 p) txt rdacontent c rdamedia cr rdacarrier Turbulence theory is one of the most intriguing parts of fluid mechanics and many outstanding scientists have tried to apply their knowledge to the development of the theory and to offer useful recommendations for solution of some practical problems. In this monograph the author attempts to integrate many specific approaches into the unified theory. The basic premise is the simple idea that a small eddy, that is an element of turbulent meso-structure, possesses its own dynamics as an object rotating with its own spin velocity and obeying the Newton dynamics of a finite body. A number of such eddies fills a coordinate cell, and the angular momentum balance has to be formulated for this spatial cell. If the cell coincides with a finite difference element at a numerical calculation and if the external length scale is large, this elementary volume can be considered as a differential one and a continuum parameterization has to be used. Nontrivial angular balance is a consequence of the asymmetrical Reynolds stress action at the oriented sides of an elementary volume. At first glance, the averaged dyad of velocity components is symmetrical, == However, if averaging is performed over the plane with normal nj, the principle of commutation is lost. As a result, the stress tensor asymmetry j is determined by other factors that participate in the angular momentum balance. This is the only possibility to determine a stress in engineering Earth Sciences Geophysics/Geodesy Atmospheric Sciences Oceanography Mathematical Modeling and Industrial Mathematics Earth sciences Geophysics Atmospheric sciences Mathematical models Erscheint auch als Druck-Ausgabe 9789048164783 https://doi.org/10.1007/978-94-017-0199-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Nikolaevskiy, Victor N. Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method Earth Sciences Geophysics/Geodesy Atmospheric Sciences Oceanography Mathematical Modeling and Industrial Mathematics Earth sciences Geophysics Atmospheric sciences Mathematical models |
title | Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method |
title_auth | Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method |
title_exact_search | Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method |
title_full | Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method by Victor N. Nikolaevskiy |
title_fullStr | Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method by Victor N. Nikolaevskiy |
title_full_unstemmed | Angular Momentum in Geophysical Turbulence Continuum Spatial Averaging Method by Victor N. Nikolaevskiy |
title_short | Angular Momentum in Geophysical Turbulence |
title_sort | angular momentum in geophysical turbulence continuum spatial averaging method |
title_sub | Continuum Spatial Averaging Method |
topic | Earth Sciences Geophysics/Geodesy Atmospheric Sciences Oceanography Mathematical Modeling and Industrial Mathematics Earth sciences Geophysics Atmospheric sciences Mathematical models |
topic_facet | Earth Sciences Geophysics/Geodesy Atmospheric Sciences Oceanography Mathematical Modeling and Industrial Mathematics Earth sciences Geophysics Atmospheric sciences Mathematical models |
url | https://doi.org/10.1007/978-94-017-0199-0 |
work_keys_str_mv | AT nikolaevskiyvictorn angularmomentumingeophysicalturbulencecontinuumspatialaveragingmethod |