Spin Electronics:
The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that o...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2004
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier |
Beschreibung: | 1 Online-Ressource (XXIV, 198 p) |
ISBN: | 9789401705325 |
DOI: | 10.1007/978-94-017-0532-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045177620 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180911s2004 |||| o||u| ||||||eng d | ||
020 | |a 9789401705325 |9 978-94-017-0532-5 | ||
024 | 7 | |a 10.1007/978-94-017-0532-5 |2 doi | |
035 | |a (ZDB-2-EES)978-94-017-0532-5 | ||
035 | |a (OCoLC)1053816711 | ||
035 | |a (DE-599)BVBBV045177620 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 551.5 |2 23 | |
245 | 1 | 0 | |a Spin Electronics |c edited by David D. Awschalom, Robert A. Buhrman, James M. Daughton, Stephan von Molnr, Michael L. Roukes |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (XXIV, 198 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier | ||
650 | 4 | |a Earth Sciences | |
650 | 4 | |a Atmospheric Sciences | |
650 | 4 | |a Electronics and Microelectronics, Instrumentation | |
650 | 4 | |a Paleontology | |
650 | 4 | |a Condensed Matter Physics | |
650 | 4 | |a Magnetism, Magnetic Materials | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Earth sciences | |
650 | 4 | |a Paleontology | |
650 | 4 | |a Atmospheric sciences | |
650 | 4 | |a Condensed matter | |
650 | 4 | |a Magnetism | |
650 | 4 | |a Magnetic materials | |
650 | 4 | |a Electrical engineering | |
650 | 4 | |a Electronics | |
650 | 4 | |a Microelectronics | |
700 | 1 | |a Awschalom, David D. |4 edt | |
700 | 1 | |a Buhrman, Robert A. |4 edt | |
700 | 1 | |a Daughton, James M. |4 edt | |
700 | 1 | |a Molnr, Stephan von |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789048165131 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0532-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-EES | ||
940 | 1 | |q ZDB-2-EES_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030566850 | ||
966 | e | |u https://doi.org/10.1007/978-94-017-0532-5 |l BTU01 |p ZDB-2-EES |q ZDB-2-EES_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178866817728512 |
---|---|
any_adam_object | |
author2 | Awschalom, David D. Buhrman, Robert A. Daughton, James M. Molnr, Stephan von |
author2_role | edt edt edt edt |
author2_variant | d d a dd dda r a b ra rab j m d jm jmd s v m sv svm |
author_facet | Awschalom, David D. Buhrman, Robert A. Daughton, James M. Molnr, Stephan von |
building | Verbundindex |
bvnumber | BV045177620 |
collection | ZDB-2-EES |
ctrlnum | (ZDB-2-EES)978-94-017-0532-5 (OCoLC)1053816711 (DE-599)BVBBV045177620 |
dewey-full | 551.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.5 |
dewey-search | 551.5 |
dewey-sort | 3551.5 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie |
doi_str_mv | 10.1007/978-94-017-0532-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03553nmm a2200589zc 4500</leader><controlfield tag="001">BV045177620</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180911s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401705325</subfield><subfield code="9">978-94-017-0532-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0532-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-EES)978-94-017-0532-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053816711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045177620</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spin Electronics</subfield><subfield code="c">edited by David D. Awschalom, Robert A. Buhrman, James M. Daughton, Stephan von Molnr, Michael L. Roukes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 198 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics and Microelectronics, Instrumentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paleontology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism, Magnetic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paleontology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microelectronics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awschalom, David D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buhrman, Robert A.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Daughton, James M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Molnr, Stephan von</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789048165131</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0532-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-EES</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-EES_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030566850</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-017-0532-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-EES</subfield><subfield code="q">ZDB-2-EES_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045177620 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:47Z |
institution | BVB |
isbn | 9789401705325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030566850 |
oclc_num | 1053816711 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XXIV, 198 p) |
psigel | ZDB-2-EES ZDB-2-EES_Archiv ZDB-2-EES ZDB-2-EES_Archiv |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Spin Electronics edited by David D. Awschalom, Robert A. Buhrman, James M. Daughton, Stephan von Molnr, Michael L. Roukes Dordrecht Springer Netherlands 2004 1 Online-Ressource (XXIV, 198 p) txt rdacontent c rdamedia cr rdacarrier The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier Earth Sciences Atmospheric Sciences Electronics and Microelectronics, Instrumentation Paleontology Condensed Matter Physics Magnetism, Magnetic Materials Electrical Engineering Earth sciences Atmospheric sciences Condensed matter Magnetism Magnetic materials Electrical engineering Electronics Microelectronics Awschalom, David D. edt Buhrman, Robert A. edt Daughton, James M. edt Molnr, Stephan von edt Erscheint auch als Druck-Ausgabe 9789048165131 https://doi.org/10.1007/978-94-017-0532-5 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Spin Electronics Earth Sciences Atmospheric Sciences Electronics and Microelectronics, Instrumentation Paleontology Condensed Matter Physics Magnetism, Magnetic Materials Electrical Engineering Earth sciences Atmospheric sciences Condensed matter Magnetism Magnetic materials Electrical engineering Electronics Microelectronics |
title | Spin Electronics |
title_auth | Spin Electronics |
title_exact_search | Spin Electronics |
title_full | Spin Electronics edited by David D. Awschalom, Robert A. Buhrman, James M. Daughton, Stephan von Molnr, Michael L. Roukes |
title_fullStr | Spin Electronics edited by David D. Awschalom, Robert A. Buhrman, James M. Daughton, Stephan von Molnr, Michael L. Roukes |
title_full_unstemmed | Spin Electronics edited by David D. Awschalom, Robert A. Buhrman, James M. Daughton, Stephan von Molnr, Michael L. Roukes |
title_short | Spin Electronics |
title_sort | spin electronics |
topic | Earth Sciences Atmospheric Sciences Electronics and Microelectronics, Instrumentation Paleontology Condensed Matter Physics Magnetism, Magnetic Materials Electrical Engineering Earth sciences Atmospheric sciences Condensed matter Magnetism Magnetic materials Electrical engineering Electronics Microelectronics |
topic_facet | Earth Sciences Atmospheric Sciences Electronics and Microelectronics, Instrumentation Paleontology Condensed Matter Physics Magnetism, Magnetic Materials Electrical Engineering Earth sciences Atmospheric sciences Condensed matter Magnetism Magnetic materials Electrical engineering Electronics Microelectronics |
url | https://doi.org/10.1007/978-94-017-0532-5 |
work_keys_str_mv | AT awschalomdavidd spinelectronics AT buhrmanroberta spinelectronics AT daughtonjamesm spinelectronics AT molnrstephanvon spinelectronics |