Value Distribution Theory for Meromorphic Maps:
Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI)...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1985
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory |
Beschreibung: | 1 Online-Ressource (XI, 347 p) |
ISBN: | 9783663052920 |
DOI: | 10.1007/978-3-663-05292-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045177477 | ||
003 | DE-604 | ||
005 | 20191204 | ||
007 | cr|uuu---uuuuu | ||
008 | 180911s1985 |||| o||u| ||||||eng d | ||
020 | |a 9783663052920 |9 978-3-663-05292-0 | ||
024 | 7 | |a 10.1007/978-3-663-05292-0 |2 doi | |
035 | |a (ZDB-2-EES)978-3-663-05292-0 | ||
035 | |a (OCoLC)864108423 | ||
035 | |a (DE-599)BVBBV045177477 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 910 |2 23 | |
100 | 1 | |a Stoll, Wilhelm |d 1923-2010 |e Verfasser |0 (DE-588)1082553328 |4 aut | |
245 | 1 | 0 | |a Value Distribution Theory for Meromorphic Maps |c by Wilhelm Stoll |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1985 | |
300 | |a 1 Online-Ressource (XI, 347 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory | ||
650 | 4 | |a Geography | |
650 | 4 | |a Geography, general | |
650 | 4 | |a Geography | |
650 | 0 | 7 | |a Wertverteilungstheorie |0 (DE-588)4137510-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Meromorphe Abbildung |0 (DE-588)4778382-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Meromorphe Abbildung |0 (DE-588)4778382-5 |D s |
689 | 0 | 1 | |a Wertverteilungstheorie |0 (DE-588)4137510-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783663052944 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-05292-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-EES | ||
940 | 1 | |q ZDB-2-EES_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030566707 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-663-05292-0 |l BTU01 |p ZDB-2-EES |q ZDB-2-EES_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178866502107136 |
---|---|
any_adam_object | |
author | Stoll, Wilhelm 1923-2010 |
author_GND | (DE-588)1082553328 |
author_facet | Stoll, Wilhelm 1923-2010 |
author_role | aut |
author_sort | Stoll, Wilhelm 1923-2010 |
author_variant | w s ws |
building | Verbundindex |
bvnumber | BV045177477 |
collection | ZDB-2-EES |
ctrlnum | (ZDB-2-EES)978-3-663-05292-0 (OCoLC)864108423 (DE-599)BVBBV045177477 |
dewey-full | 910 |
dewey-hundreds | 900 - History & geography |
dewey-ones | 910 - Geography and travel |
dewey-raw | 910 |
dewey-search | 910 |
dewey-sort | 3910 |
dewey-tens | 910 - Geography and travel |
discipline | Geographie |
doi_str_mv | 10.1007/978-3-663-05292-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nmm a2200469zc 4500</leader><controlfield tag="001">BV045177477</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191204 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180911s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663052920</subfield><subfield code="9">978-3-663-05292-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-05292-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-EES)978-3-663-05292-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864108423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045177477</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">910</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoll, Wilhelm</subfield><subfield code="d">1923-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082553328</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Value Distribution Theory for Meromorphic Maps</subfield><subfield code="c">by Wilhelm Stoll</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 347 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wertverteilungstheorie</subfield><subfield code="0">(DE-588)4137510-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meromorphe Abbildung</subfield><subfield code="0">(DE-588)4778382-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Meromorphe Abbildung</subfield><subfield code="0">(DE-588)4778382-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wertverteilungstheorie</subfield><subfield code="0">(DE-588)4137510-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783663052944</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-05292-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-EES</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-EES_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030566707</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-663-05292-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-EES</subfield><subfield code="q">ZDB-2-EES_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045177477 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:47Z |
institution | BVB |
isbn | 9783663052920 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030566707 |
oclc_num | 864108423 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XI, 347 p) |
psigel | ZDB-2-EES ZDB-2-EES_Archiv ZDB-2-EES ZDB-2-EES_Archiv |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
spelling | Stoll, Wilhelm 1923-2010 Verfasser (DE-588)1082553328 aut Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll Wiesbaden Vieweg+Teubner Verlag 1985 1 Online-Ressource (XI, 347 p) txt rdacontent c rdamedia cr rdacarrier Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory Geography Geography, general Wertverteilungstheorie (DE-588)4137510-5 gnd rswk-swf Meromorphe Abbildung (DE-588)4778382-5 gnd rswk-swf Meromorphe Abbildung (DE-588)4778382-5 s Wertverteilungstheorie (DE-588)4137510-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9783663052944 https://doi.org/10.1007/978-3-663-05292-0 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stoll, Wilhelm 1923-2010 Value Distribution Theory for Meromorphic Maps Geography Geography, general Wertverteilungstheorie (DE-588)4137510-5 gnd Meromorphe Abbildung (DE-588)4778382-5 gnd |
subject_GND | (DE-588)4137510-5 (DE-588)4778382-5 |
title | Value Distribution Theory for Meromorphic Maps |
title_auth | Value Distribution Theory for Meromorphic Maps |
title_exact_search | Value Distribution Theory for Meromorphic Maps |
title_full | Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll |
title_fullStr | Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll |
title_full_unstemmed | Value Distribution Theory for Meromorphic Maps by Wilhelm Stoll |
title_short | Value Distribution Theory for Meromorphic Maps |
title_sort | value distribution theory for meromorphic maps |
topic | Geography Geography, general Wertverteilungstheorie (DE-588)4137510-5 gnd Meromorphe Abbildung (DE-588)4778382-5 gnd |
topic_facet | Geography Geography, general Wertverteilungstheorie Meromorphe Abbildung |
url | https://doi.org/10.1007/978-3-663-05292-0 |
work_keys_str_mv | AT stollwilhelm valuedistributiontheoryformeromorphicmaps |