Fractional quantum mechanics:
"Fractional quantum mechanics is a recently developed natural generalization of quantum mechanics. This book summarizes fundamentals and applications of fractional quantum mechanics. The book presents the fractional Schrödinger equation, which is a manifestation of fractional quantum mechanics....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Fractional quantum mechanics is a recently developed natural generalization of quantum mechanics. This book summarizes fundamentals and applications of fractional quantum mechanics. The book presents the fractional Schrödinger equation, which is a manifestation of fractional quantum mechanics. A new theoretical tool ... fractional path integral ... the path integral over Lévy flights, has been presented. The fractional path integral method enhances the well-known Feynman path integral framework. The book covers related topics on time fractional quantum mechanics, fractional classical mechanics and the [alpha]-stable Lévy random process. The book is helpful as a monograph and a handbook for theorists, pure and applied mathematicians, solid-state physicists and chemists working with the Schrödinger equation, the path integral technique and applications of fractional calculus in different research areas"... |
Beschreibung: | xv, 341 Seiten |
ISBN: | 9789813223790 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045152946 | ||
003 | DE-604 | ||
005 | 20191008 | ||
007 | t | ||
008 | 180828s2018 si |||| 00||| eng d | ||
010 | |a 017051779 | ||
020 | |a 9789813223790 |c hc |9 978-981-3223-79-0 | ||
035 | |a (OCoLC)1057338104 | ||
035 | |a (DE-599)BVBBV045152946 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a si |c SG | ||
049 | |a DE-703 |a DE-91G | ||
050 | 0 | |a QC174.17.M35 | |
082 | 0 | |a 530.1201/514742 |2 23 | |
084 | |a UK 4000 |0 (DE-625)145801: |2 rvk | ||
084 | |a UK 4500 |0 (DE-625)145802: |2 rvk | ||
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
084 | |a PHY 020f |2 stub | ||
100 | 1 | |a Laskin, Nick |e Verfasser |0 (DE-588)1165196808 |4 aut | |
245 | 1 | 0 | |a Fractional quantum mechanics |c Nick Laskin (TopQuark Inc., Canada) |
264 | 1 | |a New Jersey |b World Scientific |c [2018] | |
300 | |a xv, 341 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a "Fractional quantum mechanics is a recently developed natural generalization of quantum mechanics. This book summarizes fundamentals and applications of fractional quantum mechanics. The book presents the fractional Schrödinger equation, which is a manifestation of fractional quantum mechanics. A new theoretical tool ... fractional path integral ... the path integral over Lévy flights, has been presented. The fractional path integral method enhances the well-known Feynman path integral framework. The book covers related topics on time fractional quantum mechanics, fractional classical mechanics and the [alpha]-stable Lévy random process. The book is helpful as a monograph and a handbook for theorists, pure and applied mathematicians, solid-state physicists and chemists working with the Schrödinger equation, the path integral technique and applications of fractional calculus in different research areas"... | ||
650 | 4 | |a Quantum theory |x Mathematics | |
650 | 4 | |a Fractals | |
650 | 4 | |a Path integrals | |
650 | 4 | |a Schrödinger equation | |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | 2 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030542612&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030542612 |
Datensatz im Suchindex
_version_ | 1804178826890051584 |
---|---|
adam_text | FRACTIONAL QUANTUM MECHANICS
/ LASKIN, NICKYYEAUTHOR
: 2018
TABLE OF CONTENTS / INHALTSVERZEICHNIS
WHAT IS FRACTIONAL QUANTUM MECHANICS?
FRACTALS
FRACTIONAL SCHROIDINGER EQUATION
TIME-INDEPENDENT FRACTIONAL SCHROIDINGER EQUATION
FRACTIONAL UNCERTAINTY RELATION
PATH INTEGRAL OVER LEIVY FLIGHTS
A FREE PARTICLE QUANTUM KERNEL
TRANSFORMS OF A FREE PARTICLE KERNEL
FRACTIONAL OSCILLATOR
SOME ANALYTICALLY SOLVABLE MODELS OF FRACTIONAL QUANTUM MECHANICS
FRACTIONAL NON-LINEAR QUANTUM DYNAMICS
TIME FRACTIONAL QUANTUM MECHANICS
APPLICATIONS OF TIME FRACTIONAL QUANTUM MECHANICS
FRACTIONAL STATISTICAL MECHANICS
FRACTIONAL CLASSICAL MECHANICS
FRACTIONAL DYNAMICS IN POLAR COORDINATE SYSTEM
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Laskin, Nick |
author_GND | (DE-588)1165196808 |
author_facet | Laskin, Nick |
author_role | aut |
author_sort | Laskin, Nick |
author_variant | n l nl |
building | Verbundindex |
bvnumber | BV045152946 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.M35 |
callnumber-search | QC174.17.M35 |
callnumber-sort | QC 3174.17 M35 |
callnumber-subject | QC - Physics |
classification_rvk | UK 4000 UK 4500 UG 3900 |
classification_tum | PHY 020f |
ctrlnum | (OCoLC)1057338104 (DE-599)BVBBV045152946 |
dewey-full | 530.1201/514742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1201/514742 |
dewey-search | 530.1201/514742 |
dewey-sort | 3530.1201 6514742 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02722nam a2200505 c 4500</leader><controlfield tag="001">BV045152946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191008 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180828s2018 si |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">017051779</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813223790</subfield><subfield code="c">hc</subfield><subfield code="9">978-981-3223-79-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1057338104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045152946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.M35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1201/514742</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4000</subfield><subfield code="0">(DE-625)145801:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4500</subfield><subfield code="0">(DE-625)145802:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Laskin, Nick</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1165196808</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractional quantum mechanics</subfield><subfield code="c">Nick Laskin (TopQuark Inc., Canada)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 341 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Fractional quantum mechanics is a recently developed natural generalization of quantum mechanics. This book summarizes fundamentals and applications of fractional quantum mechanics. The book presents the fractional Schrödinger equation, which is a manifestation of fractional quantum mechanics. A new theoretical tool ... fractional path integral ... the path integral over Lévy flights, has been presented. The fractional path integral method enhances the well-known Feynman path integral framework. The book covers related topics on time fractional quantum mechanics, fractional classical mechanics and the [alpha]-stable Lévy random process. The book is helpful as a monograph and a handbook for theorists, pure and applied mathematicians, solid-state physicists and chemists working with the Schrödinger equation, the path integral technique and applications of fractional calculus in different research areas"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schrödinger equation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030542612&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030542612</subfield></datafield></record></collection> |
id | DE-604.BV045152946 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:09Z |
institution | BVB |
isbn | 9789813223790 |
language | English |
lccn | 017051779 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030542612 |
oclc_num | 1057338104 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-91G DE-BY-TUM |
physical | xv, 341 Seiten |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific |
record_format | marc |
spelling | Laskin, Nick Verfasser (DE-588)1165196808 aut Fractional quantum mechanics Nick Laskin (TopQuark Inc., Canada) New Jersey World Scientific [2018] xv, 341 Seiten txt rdacontent n rdamedia nc rdacarrier "Fractional quantum mechanics is a recently developed natural generalization of quantum mechanics. This book summarizes fundamentals and applications of fractional quantum mechanics. The book presents the fractional Schrödinger equation, which is a manifestation of fractional quantum mechanics. A new theoretical tool ... fractional path integral ... the path integral over Lévy flights, has been presented. The fractional path integral method enhances the well-known Feynman path integral framework. The book covers related topics on time fractional quantum mechanics, fractional classical mechanics and the [alpha]-stable Lévy random process. The book is helpful as a monograph and a handbook for theorists, pure and applied mathematicians, solid-state physicists and chemists working with the Schrödinger equation, the path integral technique and applications of fractional calculus in different research areas"... Quantum theory Mathematics Fractals Path integrals Schrödinger equation Fraktal (DE-588)4123220-3 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s Fraktal (DE-588)4123220-3 s Pfadintegral (DE-588)4173973-5 s DE-604 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030542612&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Laskin, Nick Fractional quantum mechanics Quantum theory Mathematics Fractals Path integrals Schrödinger equation Fraktal (DE-588)4123220-3 gnd Pfadintegral (DE-588)4173973-5 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4123220-3 (DE-588)4173973-5 (DE-588)4047989-4 |
title | Fractional quantum mechanics |
title_auth | Fractional quantum mechanics |
title_exact_search | Fractional quantum mechanics |
title_full | Fractional quantum mechanics Nick Laskin (TopQuark Inc., Canada) |
title_fullStr | Fractional quantum mechanics Nick Laskin (TopQuark Inc., Canada) |
title_full_unstemmed | Fractional quantum mechanics Nick Laskin (TopQuark Inc., Canada) |
title_short | Fractional quantum mechanics |
title_sort | fractional quantum mechanics |
topic | Quantum theory Mathematics Fractals Path integrals Schrödinger equation Fraktal (DE-588)4123220-3 gnd Pfadintegral (DE-588)4173973-5 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Quantum theory Mathematics Fractals Path integrals Schrödinger equation Fraktal Pfadintegral Quantenmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030542612&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT laskinnick fractionalquantummechanics |