Approximation, Complex Analysis, and Potential Theory:
Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. H...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2001
|
Schriftenreihe: | NATO Science Series, Series II: Mathematics, Physics and Chemistry
37 |
Schlagworte: | |
Online-Zugang: | UBT01 Volltext |
Zusammenfassung: | Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians |
Beschreibung: | 1 Online-Ressource (XIX, 264 p) |
ISBN: | 9789401009799 |
DOI: | 10.1007/978-94-010-0979-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045152333 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180828s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789401009799 |9 978-94-010-0979-9 | ||
024 | 7 | |a 10.1007/978-94-010-0979-9 |2 doi | |
035 | |a (ZDB-2-CMS)978-94-010-0979-9 | ||
035 | |a (OCoLC)1050947724 | ||
035 | |a (DE-599)BVBBV045152333 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 518 |2 23 | |
245 | 1 | 0 | |a Approximation, Complex Analysis, and Potential Theory |c edited by N. Arakelian, P. M. Gauthier, G. Sabidussi |
246 | 1 | 3 | |a Proceedings of the Nato Advanced Study Institute on Modern Methods in Scientific Computing and Applications, Montréal, Québec, Canada, from 3 to 14 July 2000 |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2001 | |
300 | |a 1 Online-Ressource (XIX, 264 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO Science Series, Series II: Mathematics, Physics and Chemistry |v 37 | |
520 | |a Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Computer mathematics | |
650 | 4 | |a Fluids | |
700 | 1 | |a Arakelian, N. |4 edt | |
700 | 1 | |a Gauthier, P. M. |4 edt | |
700 | 1 | |a Sabidussi, G. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402000294 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-010-0979-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CMS | ||
940 | 1 | |q ZDB-2-CMS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030542001 | ||
966 | e | |u https://doi.org/10.1007/978-94-010-0979-9 |l UBT01 |p ZDB-2-CMS |q ZDB-2-CMS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178825574088704 |
---|---|
any_adam_object | |
author2 | Arakelian, N. Gauthier, P. M. Sabidussi, G. |
author2_role | edt edt edt |
author2_variant | n a na p m g pm pmg g s gs |
author_facet | Arakelian, N. Gauthier, P. M. Sabidussi, G. |
building | Verbundindex |
bvnumber | BV045152333 |
collection | ZDB-2-CMS |
ctrlnum | (ZDB-2-CMS)978-94-010-0979-9 (OCoLC)1050947724 (DE-599)BVBBV045152333 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-010-0979-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03009nmm a2200541zcb4500</leader><controlfield tag="001">BV045152333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401009799</subfield><subfield code="9">978-94-010-0979-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-0979-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-94-010-0979-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050947724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045152333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation, Complex Analysis, and Potential Theory</subfield><subfield code="c">edited by N. Arakelian, P. M. Gauthier, G. Sabidussi</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the Nato Advanced Study Institute on Modern Methods in Scientific Computing and Applications, Montréal, Québec, Canada, from 3 to 14 July 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 264 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO Science Series, Series II: Mathematics, Physics and Chemistry</subfield><subfield code="v">37</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluids</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arakelian, N.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gauthier, P. M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabidussi, G.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402000294</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-0979-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030542001</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-010-0979-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045152333 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:08Z |
institution | BVB |
isbn | 9789401009799 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030542001 |
oclc_num | 1050947724 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource (XIX, 264 p) |
psigel | ZDB-2-CMS ZDB-2-CMS_2000/2004 ZDB-2-CMS ZDB-2-CMS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Netherlands |
record_format | marc |
series2 | NATO Science Series, Series II: Mathematics, Physics and Chemistry |
spelling | Approximation, Complex Analysis, and Potential Theory edited by N. Arakelian, P. M. Gauthier, G. Sabidussi Proceedings of the Nato Advanced Study Institute on Modern Methods in Scientific Computing and Applications, Montréal, Québec, Canada, from 3 to 14 July 2000 Dordrecht Springer Netherlands 2001 1 Online-Ressource (XIX, 264 p) txt rdacontent c rdamedia cr rdacarrier NATO Science Series, Series II: Mathematics, Physics and Chemistry 37 Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians Mathematics Computational Mathematics and Numerical Analysis Fluid- and Aerodynamics Partial Differential Equations Applications of Mathematics Partial differential equations Applied mathematics Engineering mathematics Computer mathematics Fluids Arakelian, N. edt Gauthier, P. M. edt Sabidussi, G. edt Erscheint auch als Druck-Ausgabe 9781402000294 https://doi.org/10.1007/978-94-010-0979-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Approximation, Complex Analysis, and Potential Theory Mathematics Computational Mathematics and Numerical Analysis Fluid- and Aerodynamics Partial Differential Equations Applications of Mathematics Partial differential equations Applied mathematics Engineering mathematics Computer mathematics Fluids |
title | Approximation, Complex Analysis, and Potential Theory |
title_alt | Proceedings of the Nato Advanced Study Institute on Modern Methods in Scientific Computing and Applications, Montréal, Québec, Canada, from 3 to 14 July 2000 |
title_auth | Approximation, Complex Analysis, and Potential Theory |
title_exact_search | Approximation, Complex Analysis, and Potential Theory |
title_full | Approximation, Complex Analysis, and Potential Theory edited by N. Arakelian, P. M. Gauthier, G. Sabidussi |
title_fullStr | Approximation, Complex Analysis, and Potential Theory edited by N. Arakelian, P. M. Gauthier, G. Sabidussi |
title_full_unstemmed | Approximation, Complex Analysis, and Potential Theory edited by N. Arakelian, P. M. Gauthier, G. Sabidussi |
title_short | Approximation, Complex Analysis, and Potential Theory |
title_sort | approximation complex analysis and potential theory |
topic | Mathematics Computational Mathematics and Numerical Analysis Fluid- and Aerodynamics Partial Differential Equations Applications of Mathematics Partial differential equations Applied mathematics Engineering mathematics Computer mathematics Fluids |
topic_facet | Mathematics Computational Mathematics and Numerical Analysis Fluid- and Aerodynamics Partial Differential Equations Applications of Mathematics Partial differential equations Applied mathematics Engineering mathematics Computer mathematics Fluids |
url | https://doi.org/10.1007/978-94-010-0979-9 |
work_keys_str_mv | AT arakeliann approximationcomplexanalysisandpotentialtheory AT gauthierpm approximationcomplexanalysisandpotentialtheory AT sabidussig approximationcomplexanalysisandpotentialtheory AT arakeliann proceedingsofthenatoadvancedstudyinstituteonmodernmethodsinscientificcomputingandapplicationsmontrealquebeccanadafrom3to14july2000 AT gauthierpm proceedingsofthenatoadvancedstudyinstituteonmodernmethodsinscientificcomputingandapplicationsmontrealquebeccanadafrom3to14july2000 AT sabidussig proceedingsofthenatoadvancedstudyinstituteonmodernmethodsinscientificcomputingandapplicationsmontrealquebeccanadafrom3to14july2000 |