Clifford Analysis and Its Applications:
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its sc...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2001
|
Schriftenreihe: | NATO Science Series, Series II: Mathematics, Physics and Chemistry
25 |
Schlagworte: | |
Online-Zugang: | UBT01 Volltext |
Zusammenfassung: | In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields |
Beschreibung: | 1 Online-Ressource (XII, 416 p) |
ISBN: | 9789401008624 |
DOI: | 10.1007/978-94-010-0862-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045152324 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180828s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789401008624 |9 978-94-010-0862-4 | ||
024 | 7 | |a 10.1007/978-94-010-0862-4 |2 doi | |
035 | |a (ZDB-2-CMS)978-94-010-0862-4 | ||
035 | |a (OCoLC)1050947669 | ||
035 | |a (DE-599)BVBBV045152324 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 515.9 |2 23 | |
245 | 1 | 0 | |a Clifford Analysis and Its Applications |c edited by F. Brackx, J. S. R. Chisholm, V. Souček |
246 | 1 | 3 | |a Proceedings of the NATO Advanced Research Workshop, Prague, Czech Republic, October 30-November 3, 2000 |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2001 | |
300 | |a 1 Online-Ressource (XII, 416 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO Science Series, Series II: Mathematics, Physics and Chemistry |v 25 | |
520 | |a In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Clifford-Analysis |0 (DE-588)4484012-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2000 |z Prag |2 gnd-content | |
689 | 0 | 0 | |a Clifford-Analysis |0 (DE-588)4484012-3 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Brackx, F. |4 edt | |
700 | 1 | |a Chisholm, J. S. R. |4 edt | |
700 | 1 | |a Souček, V. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792370451 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-010-0862-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CMS | ||
940 | 1 | |q ZDB-2-CMS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030541992 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-94-010-0862-4 |l UBT01 |p ZDB-2-CMS |q ZDB-2-CMS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178825526902784 |
---|---|
any_adam_object | |
author2 | Brackx, F. Chisholm, J. S. R. Souček, V. |
author2_role | edt edt edt |
author2_variant | f b fb j s r c jsr jsrc v s vs |
author_facet | Brackx, F. Chisholm, J. S. R. Souček, V. |
building | Verbundindex |
bvnumber | BV045152324 |
collection | ZDB-2-CMS |
ctrlnum | (ZDB-2-CMS)978-94-010-0862-4 (OCoLC)1050947669 (DE-599)BVBBV045152324 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-010-0862-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03430nmm a2200649zcb4500</leader><controlfield tag="001">BV045152324</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401008624</subfield><subfield code="9">978-94-010-0862-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-0862-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-94-010-0862-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050947669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045152324</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford Analysis and Its Applications</subfield><subfield code="c">edited by F. Brackx, J. S. R. Chisholm, V. Souček</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the NATO Advanced Research Workshop, Prague, Czech Republic, October 30-November 3, 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 416 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO Science Series, Series II: Mathematics, Physics and Chemistry</subfield><subfield code="v">25</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Analysis</subfield><subfield code="0">(DE-588)4484012-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Prag</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Analysis</subfield><subfield code="0">(DE-588)4484012-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brackx, F.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chisholm, J. S. R.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souček, V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792370451</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-0862-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030541992</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-010-0862-4</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2000 Prag gnd-content |
genre_facet | Konferenzschrift 2000 Prag |
id | DE-604.BV045152324 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:08Z |
institution | BVB |
isbn | 9789401008624 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030541992 |
oclc_num | 1050947669 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource (XII, 416 p) |
psigel | ZDB-2-CMS ZDB-2-CMS_2000/2004 ZDB-2-CMS ZDB-2-CMS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Netherlands |
record_format | marc |
series2 | NATO Science Series, Series II: Mathematics, Physics and Chemistry |
spelling | Clifford Analysis and Its Applications edited by F. Brackx, J. S. R. Chisholm, V. Souček Proceedings of the NATO Advanced Research Workshop, Prague, Czech Republic, October 30-November 3, 2000 Dordrecht Springer Netherlands 2001 1 Online-Ressource (XII, 416 p) txt rdacontent c rdamedia cr rdacarrier NATO Science Series, Series II: Mathematics, Physics and Chemistry 25 In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields Mathematics Functions of a Complex Variable Abstract Harmonic Analysis Partial Differential Equations Global Analysis and Analysis on Manifolds Applications of Mathematics Harmonic analysis Functions of complex variables Global analysis (Mathematics) Manifolds (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Clifford-Analysis (DE-588)4484012-3 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2000 Prag gnd-content Clifford-Analysis (DE-588)4484012-3 s 2\p DE-604 Brackx, F. edt Chisholm, J. S. R. edt Souček, V. edt Erscheint auch als Druck-Ausgabe 9780792370451 https://doi.org/10.1007/978-94-010-0862-4 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Clifford Analysis and Its Applications Mathematics Functions of a Complex Variable Abstract Harmonic Analysis Partial Differential Equations Global Analysis and Analysis on Manifolds Applications of Mathematics Harmonic analysis Functions of complex variables Global analysis (Mathematics) Manifolds (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Clifford-Analysis (DE-588)4484012-3 gnd |
subject_GND | (DE-588)4484012-3 (DE-588)1071861417 |
title | Clifford Analysis and Its Applications |
title_alt | Proceedings of the NATO Advanced Research Workshop, Prague, Czech Republic, October 30-November 3, 2000 |
title_auth | Clifford Analysis and Its Applications |
title_exact_search | Clifford Analysis and Its Applications |
title_full | Clifford Analysis and Its Applications edited by F. Brackx, J. S. R. Chisholm, V. Souček |
title_fullStr | Clifford Analysis and Its Applications edited by F. Brackx, J. S. R. Chisholm, V. Souček |
title_full_unstemmed | Clifford Analysis and Its Applications edited by F. Brackx, J. S. R. Chisholm, V. Souček |
title_short | Clifford Analysis and Its Applications |
title_sort | clifford analysis and its applications |
topic | Mathematics Functions of a Complex Variable Abstract Harmonic Analysis Partial Differential Equations Global Analysis and Analysis on Manifolds Applications of Mathematics Harmonic analysis Functions of complex variables Global analysis (Mathematics) Manifolds (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Clifford-Analysis (DE-588)4484012-3 gnd |
topic_facet | Mathematics Functions of a Complex Variable Abstract Harmonic Analysis Partial Differential Equations Global Analysis and Analysis on Manifolds Applications of Mathematics Harmonic analysis Functions of complex variables Global analysis (Mathematics) Manifolds (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Clifford-Analysis Konferenzschrift 2000 Prag |
url | https://doi.org/10.1007/978-94-010-0862-4 |
work_keys_str_mv | AT brackxf cliffordanalysisanditsapplications AT chisholmjsr cliffordanalysisanditsapplications AT soucekv cliffordanalysisanditsapplications AT brackxf proceedingsofthenatoadvancedresearchworkshoppragueczechrepublicoctober30november32000 AT chisholmjsr proceedingsofthenatoadvancedresearchworkshoppragueczechrepublicoctober30november32000 AT soucekv proceedingsofthenatoadvancedresearchworkshoppragueczechrepublicoctober30november32000 |