Towards the First Silicon Laser:
Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds fo...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2003
|
Schriftenreihe: | NATO Science Series, Series II: Mathematics, Physics and Chemistry
93 |
Schlagworte: | |
Online-Zugang: | UBT01 Volltext |
Zusammenfassung: | Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book |
Beschreibung: | 1 Online-Ressource (XIV, 482 p) |
ISBN: | 9789401001496 |
DOI: | 10.1007/978-94-010-0149-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045152224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180828s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789401001496 |9 978-94-010-0149-6 | ||
024 | 7 | |a 10.1007/978-94-010-0149-6 |2 doi | |
035 | |a (ZDB-2-CMS)978-94-010-0149-6 | ||
035 | |a (OCoLC)1050952364 | ||
035 | |a (DE-599)BVBBV045152224 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 535.2 |2 23 | |
082 | 0 | |a 537.6 |2 23 | |
245 | 1 | 0 | |a Towards the First Silicon Laser |c edited by Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro |
246 | 1 | 3 | |a Proceedings of the NATO Advanced Research Workshop, held in Trento, Italy, 21-26 September 2002 |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2003 | |
300 | |a 1 Online-Ressource (XIV, 482 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO Science Series, Series II: Mathematics, Physics and Chemistry |v 93 | |
520 | |a Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book | ||
650 | 4 | |a Physics | |
650 | 4 | |a Optics and Electrodynamics | |
650 | 4 | |a Optics, Optoelectronics, Plasmonics and Optical Devices | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 4 | |a Optical and Electronic Materials | |
650 | 4 | |a Physics | |
650 | 4 | |a Optics | |
650 | 4 | |a Electrodynamics | |
650 | 4 | |a Optoelectronics | |
650 | 4 | |a Plasmons (Physics) | |
650 | 4 | |a Electrical engineering | |
650 | 4 | |a Optical materials | |
650 | 4 | |a Electronic materials | |
650 | 4 | |a Materials science | |
700 | 1 | |a Pavesi, Lorenzo |4 edt | |
700 | 1 | |a Gaponenko, Sergey |4 edt | |
700 | 1 | |a Negro, Luca Dal |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402011948 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-010-0149-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CMS | ||
940 | 1 | |q ZDB-2-CMS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030541892 | ||
966 | e | |u https://doi.org/10.1007/978-94-010-0149-6 |l UBT01 |p ZDB-2-CMS |q ZDB-2-CMS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178825231204352 |
---|---|
any_adam_object | |
author2 | Pavesi, Lorenzo Gaponenko, Sergey Negro, Luca Dal |
author2_role | edt edt edt |
author2_variant | l p lp s g sg l d n ld ldn |
author_facet | Pavesi, Lorenzo Gaponenko, Sergey Negro, Luca Dal |
building | Verbundindex |
bvnumber | BV045152224 |
collection | ZDB-2-CMS |
ctrlnum | (ZDB-2-CMS)978-94-010-0149-6 (OCoLC)1050952364 (DE-599)BVBBV045152224 |
dewey-full | 535.2 537.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation 537 - Electricity and electronics |
dewey-raw | 535.2 537.6 |
dewey-search | 535.2 537.6 |
dewey-sort | 3535.2 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-010-0149-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03111nmm a2200601zcb4500</leader><controlfield tag="001">BV045152224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401001496</subfield><subfield code="9">978-94-010-0149-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-0149-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-94-010-0149-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050952364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045152224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards the First Silicon Laser</subfield><subfield code="c">edited by Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the NATO Advanced Research Workshop, held in Trento, Italy, 21-26 September 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 482 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO Science Series, Series II: Mathematics, Physics and Chemistry</subfield><subfield code="v">93</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics and Electrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics, Optoelectronics, Plasmonics and Optical Devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical and Electronic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optoelectronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmons (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials science</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pavesi, Lorenzo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaponenko, Sergey</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negro, Luca Dal</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402011948</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-0149-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030541892</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-010-0149-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045152224 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:07Z |
institution | BVB |
isbn | 9789401001496 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030541892 |
oclc_num | 1050952364 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource (XIV, 482 p) |
psigel | ZDB-2-CMS ZDB-2-CMS_2000/2004 ZDB-2-CMS ZDB-2-CMS_2000/2004 |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Netherlands |
record_format | marc |
series2 | NATO Science Series, Series II: Mathematics, Physics and Chemistry |
spelling | Towards the First Silicon Laser edited by Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro Proceedings of the NATO Advanced Research Workshop, held in Trento, Italy, 21-26 September 2002 Dordrecht Springer Netherlands 2003 1 Online-Ressource (XIV, 482 p) txt rdacontent c rdamedia cr rdacarrier NATO Science Series, Series II: Mathematics, Physics and Chemistry 93 Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Electrical Engineering Characterization and Evaluation of Materials Optical and Electronic Materials Optics Electrodynamics Optoelectronics Plasmons (Physics) Electrical engineering Optical materials Electronic materials Materials science Pavesi, Lorenzo edt Gaponenko, Sergey edt Negro, Luca Dal edt Erscheint auch als Druck-Ausgabe 9781402011948 https://doi.org/10.1007/978-94-010-0149-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Towards the First Silicon Laser Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Electrical Engineering Characterization and Evaluation of Materials Optical and Electronic Materials Optics Electrodynamics Optoelectronics Plasmons (Physics) Electrical engineering Optical materials Electronic materials Materials science |
title | Towards the First Silicon Laser |
title_alt | Proceedings of the NATO Advanced Research Workshop, held in Trento, Italy, 21-26 September 2002 |
title_auth | Towards the First Silicon Laser |
title_exact_search | Towards the First Silicon Laser |
title_full | Towards the First Silicon Laser edited by Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro |
title_fullStr | Towards the First Silicon Laser edited by Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro |
title_full_unstemmed | Towards the First Silicon Laser edited by Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro |
title_short | Towards the First Silicon Laser |
title_sort | towards the first silicon laser |
topic | Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Electrical Engineering Characterization and Evaluation of Materials Optical and Electronic Materials Optics Electrodynamics Optoelectronics Plasmons (Physics) Electrical engineering Optical materials Electronic materials Materials science |
topic_facet | Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Electrical Engineering Characterization and Evaluation of Materials Optical and Electronic Materials Optics Electrodynamics Optoelectronics Plasmons (Physics) Electrical engineering Optical materials Electronic materials Materials science |
url | https://doi.org/10.1007/978-94-010-0149-6 |
work_keys_str_mv | AT pavesilorenzo towardsthefirstsiliconlaser AT gaponenkosergey towardsthefirstsiliconlaser AT negrolucadal towardsthefirstsiliconlaser AT pavesilorenzo proceedingsofthenatoadvancedresearchworkshopheldintrentoitaly2126september2002 AT gaponenkosergey proceedingsofthenatoadvancedresearchworkshopheldintrentoitaly2126september2002 AT negrolucadal proceedingsofthenatoadvancedresearchworkshopheldintrentoitaly2126september2002 |