Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations
As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has deve...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2001
|
Schlagworte: | |
Online-Zugang: | UBT01 URL des Erstveröffentlichers |
Zusammenfassung: | As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project |
Beschreibung: | 1 Online-Ressource (XIII, 265 p) |
ISBN: | 9780306475665 |
DOI: | 10.1007/b113924 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045151711 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180828s2001 |||| o||u| ||||||eng d | ||
020 | |a 9780306475665 |9 978-0-306-47566-5 | ||
024 | 7 | |a 10.1007/b113924 |2 doi | |
035 | |a (ZDB-2-CMS)978-0-306-47566-5 | ||
035 | |a (OCoLC)1050948371 | ||
035 | |a (DE-599)BVBBV045151711 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 541 |2 23 | |
084 | |a VE 5650 |0 (DE-625)147118:253 |2 rvk | ||
100 | 1 | |a Mueller, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of Quantum Chemistry |b Molecular Spectroscopy and Modern Electronic Structure Computations |c by Michael Mueller |
264 | 1 | |a Boston, MA |b Springer US |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 265 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project | ||
650 | 4 | |a Chemistry | |
650 | 4 | |a Physical Chemistry | |
650 | 4 | |a Computer Applications in Chemistry | |
650 | 4 | |a Theoretical and Computational Chemistry | |
650 | 4 | |a Chemistry | |
650 | 4 | |a Chemoinformatics | |
650 | 4 | |a Physical chemistry | |
650 | 4 | |a Chemistry, Physical and theoretical | |
650 | 0 | 7 | |a Molekülspektroskopie |0 (DE-588)4128850-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | 1 | |a Molekülspektroskopie |0 (DE-588)4128850-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780306465963 |
856 | 4 | 0 | |u https://doi.org/10.1007/b113924 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CMS | ||
940 | 1 | |q ZDB-2-CMS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030541379 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/b113924 |l UBT01 |p ZDB-2-CMS |q ZDB-2-CMS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178824010661888 |
---|---|
any_adam_object | |
author | Mueller, Michael |
author_facet | Mueller, Michael |
author_role | aut |
author_sort | Mueller, Michael |
author_variant | m m mm |
building | Verbundindex |
bvnumber | BV045151711 |
classification_rvk | VE 5650 |
collection | ZDB-2-CMS |
ctrlnum | (ZDB-2-CMS)978-0-306-47566-5 (OCoLC)1050948371 (DE-599)BVBBV045151711 |
dewey-full | 541 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541 |
dewey-search | 541 |
dewey-sort | 3541 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
doi_str_mv | 10.1007/b113924 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03403nmm a2200541zc 4500</leader><controlfield tag="001">BV045151711</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306475665</subfield><subfield code="9">978-0-306-47566-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b113924</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-0-306-47566-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050948371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045151711</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mueller, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of Quantum Chemistry</subfield><subfield code="b">Molecular Spectroscopy and Modern Electronic Structure Computations</subfield><subfield code="c">by Michael Mueller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 265 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Computational Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemoinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Physical and theoretical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülspektroskopie</subfield><subfield code="0">(DE-588)4128850-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Molekülspektroskopie</subfield><subfield code="0">(DE-588)4128850-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780306465963</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b113924</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030541379</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b113924</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045151711 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:06Z |
institution | BVB |
isbn | 9780306475665 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030541379 |
oclc_num | 1050948371 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource (XIII, 265 p) |
psigel | ZDB-2-CMS ZDB-2-CMS_2000/2004 ZDB-2-CMS ZDB-2-CMS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer US |
record_format | marc |
spelling | Mueller, Michael Verfasser aut Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations by Michael Mueller Boston, MA Springer US 2001 1 Online-Ressource (XIII, 265 p) txt rdacontent c rdamedia cr rdacarrier As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project Chemistry Physical Chemistry Computer Applications in Chemistry Theoretical and Computational Chemistry Chemoinformatics Physical chemistry Chemistry, Physical and theoretical Molekülspektroskopie (DE-588)4128850-6 gnd rswk-swf Quantenchemie (DE-588)4047979-1 gnd rswk-swf Quantenchemie (DE-588)4047979-1 s Molekülspektroskopie (DE-588)4128850-6 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9780306465963 https://doi.org/10.1007/b113924 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mueller, Michael Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations Chemistry Physical Chemistry Computer Applications in Chemistry Theoretical and Computational Chemistry Chemoinformatics Physical chemistry Chemistry, Physical and theoretical Molekülspektroskopie (DE-588)4128850-6 gnd Quantenchemie (DE-588)4047979-1 gnd |
subject_GND | (DE-588)4128850-6 (DE-588)4047979-1 |
title | Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations |
title_auth | Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations |
title_exact_search | Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations |
title_full | Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations by Michael Mueller |
title_fullStr | Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations by Michael Mueller |
title_full_unstemmed | Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations by Michael Mueller |
title_short | Fundamentals of Quantum Chemistry |
title_sort | fundamentals of quantum chemistry molecular spectroscopy and modern electronic structure computations |
title_sub | Molecular Spectroscopy and Modern Electronic Structure Computations |
topic | Chemistry Physical Chemistry Computer Applications in Chemistry Theoretical and Computational Chemistry Chemoinformatics Physical chemistry Chemistry, Physical and theoretical Molekülspektroskopie (DE-588)4128850-6 gnd Quantenchemie (DE-588)4047979-1 gnd |
topic_facet | Chemistry Physical Chemistry Computer Applications in Chemistry Theoretical and Computational Chemistry Chemoinformatics Physical chemistry Chemistry, Physical and theoretical Molekülspektroskopie Quantenchemie |
url | https://doi.org/10.1007/b113924 |
work_keys_str_mv | AT muellermichael fundamentalsofquantumchemistrymolecularspectroscopyandmodernelectronicstructurecomputations |