Soft Computing for Image Processing:
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation pr...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Heidelberg
Physica-Verlag HD
2000
|
Schriftenreihe: | Studies in Fuzziness and Soft Computing
42 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc |
Beschreibung: | 1 Online-Ressource (XVII, 591 p. 332 illus) |
ISBN: | 9783790818581 |
DOI: | 10.1007/978-3-7908-1858-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045149600 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783790818581 |9 978-3-7908-1858-1 | ||
024 | 7 | |a 10.1007/978-3-7908-1858-1 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-7908-1858-1 | ||
035 | |a (OCoLC)1050950758 | ||
035 | |a (DE-599)BVBBV045149600 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 006.6 |2 23 | |
082 | 0 | |a 006.37 |2 23 | |
245 | 1 | 0 | |a Soft Computing for Image Processing |c edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu |
264 | 1 | |a Heidelberg |b Physica-Verlag HD |c 2000 | |
300 | |a 1 Online-Ressource (XVII, 591 p. 332 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in Fuzziness and Soft Computing |v 42 | |
520 | |a Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Image Processing and Computer Vision | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a IT in Business | |
650 | 4 | |a Computer science | |
650 | 4 | |a Information technology | |
650 | 4 | |a Business / Data processing | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Image processing | |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soft Computing |0 (DE-588)4455833-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 1 | |a Soft Computing |0 (DE-588)4455833-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Pal, Sankar K. |4 edt | |
700 | 1 | |a Ghosh, Ashish |4 edt | |
700 | 1 | |a Kundu, Malay K. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783790824681 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7908-1858-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030539299 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-7908-1858-1 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7908-1858-1 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178821590548480 |
---|---|
any_adam_object | |
author2 | Pal, Sankar K. Ghosh, Ashish Kundu, Malay K. |
author2_role | edt edt edt |
author2_variant | s k p sk skp a g ag m k k mk mkk |
author_facet | Pal, Sankar K. Ghosh, Ashish Kundu, Malay K. |
building | Verbundindex |
bvnumber | BV045149600 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-7908-1858-1 (OCoLC)1050950758 (DE-599)BVBBV045149600 |
dewey-full | 006.6 006.37 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6 006.37 |
dewey-search | 006.6 006.37 |
dewey-sort | 16.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-7908-1858-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03665nmm a2200625zcb4500</leader><controlfield tag="001">BV045149600</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783790818581</subfield><subfield code="9">978-3-7908-1858-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7908-1858-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-7908-1858-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050950758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149600</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.37</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft Computing for Image Processing</subfield><subfield code="c">edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg</subfield><subfield code="b">Physica-Verlag HD</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 591 p. 332 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in Fuzziness and Soft Computing</subfield><subfield code="v">42</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing and Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IT in Business</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Sankar K.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Ashish</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kundu, Malay K.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783790824681</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7908-1858-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030539299</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7908-1858-1</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7908-1858-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV045149600 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:04Z |
institution | BVB |
isbn | 9783790818581 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030539299 |
oclc_num | 1050950758 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XVII, 591 p. 332 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Physica-Verlag HD |
record_format | marc |
series2 | Studies in Fuzziness and Soft Computing |
spelling | Soft Computing for Image Processing edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu Heidelberg Physica-Verlag HD 2000 1 Online-Ressource (XVII, 591 p. 332 illus) txt rdacontent c rdamedia cr rdacarrier Studies in Fuzziness and Soft Computing 42 Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc Computer Science Image Processing and Computer Vision Artificial Intelligence (incl. Robotics) IT in Business Computer science Information technology Business / Data processing Artificial intelligence Image processing Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Soft Computing (DE-588)4455833-8 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Bildverarbeitung (DE-588)4006684-8 s Soft Computing (DE-588)4455833-8 s 2\p DE-604 Pal, Sankar K. edt Ghosh, Ashish edt Kundu, Malay K. edt Erscheint auch als Druck-Ausgabe 9783790824681 https://doi.org/10.1007/978-3-7908-1858-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Soft Computing for Image Processing Computer Science Image Processing and Computer Vision Artificial Intelligence (incl. Robotics) IT in Business Computer science Information technology Business / Data processing Artificial intelligence Image processing Bildverarbeitung (DE-588)4006684-8 gnd Soft Computing (DE-588)4455833-8 gnd |
subject_GND | (DE-588)4006684-8 (DE-588)4455833-8 (DE-588)4143413-4 |
title | Soft Computing for Image Processing |
title_auth | Soft Computing for Image Processing |
title_exact_search | Soft Computing for Image Processing |
title_full | Soft Computing for Image Processing edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu |
title_fullStr | Soft Computing for Image Processing edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu |
title_full_unstemmed | Soft Computing for Image Processing edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu |
title_short | Soft Computing for Image Processing |
title_sort | soft computing for image processing |
topic | Computer Science Image Processing and Computer Vision Artificial Intelligence (incl. Robotics) IT in Business Computer science Information technology Business / Data processing Artificial intelligence Image processing Bildverarbeitung (DE-588)4006684-8 gnd Soft Computing (DE-588)4455833-8 gnd |
topic_facet | Computer Science Image Processing and Computer Vision Artificial Intelligence (incl. Robotics) IT in Business Computer science Information technology Business / Data processing Artificial intelligence Image processing Bildverarbeitung Soft Computing Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-7908-1858-1 |
work_keys_str_mv | AT palsankark softcomputingforimageprocessing AT ghoshashish softcomputingforimageprocessing AT kundumalayk softcomputingforimageprocessing |