Radial Basis Function Networks 2: New Advances in Design
The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the bas...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Heidelberg
Physica-Verlag HD
2001
|
Schriftenreihe: | Studies in Fuzziness and Soft Computing
67 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 2 contains a wide range of applications in the laboratory and case studies describing current industrial use. Both volumes will prove extremely useful to practitioners in the field, engineers, reserachers, students and technically accomplished managers |
Beschreibung: | 1 Online-Ressource (XIX, 360 p) |
ISBN: | 9783790818260 |
DOI: | 10.1007/978-3-7908-1826-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045149574 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783790818260 |9 978-3-7908-1826-0 | ||
024 | 7 | |a 10.1007/978-3-7908-1826-0 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-7908-1826-0 | ||
035 | |a (OCoLC)1050945838 | ||
035 | |a (DE-599)BVBBV045149574 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 006.3 |2 23 | |
245 | 1 | 0 | |a Radial Basis Function Networks 2 |b New Advances in Design |c edited by Robert J. Howlett, Lakhmi C. Jain |
264 | 1 | |a Heidelberg |b Physica-Verlag HD |c 2001 | |
300 | |a 1 Online-Ressource (XIX, 360 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in Fuzziness and Soft Computing |v 67 | |
520 | |a The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 2 contains a wide range of applications in the laboratory and case studies describing current industrial use. Both volumes will prove extremely useful to practitioners in the field, engineers, reserachers, students and technically accomplished managers | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Pattern Recognition | |
650 | 4 | |a Computer science | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Pattern recognition | |
700 | 1 | |a Howlett, Robert J. |4 edt | |
700 | 1 | |a Jain, Lakhmi C. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783790824834 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7908-1826-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030539273 | ||
966 | e | |u https://doi.org/10.1007/978-3-7908-1826-0 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7908-1826-0 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178821519245312 |
---|---|
any_adam_object | |
author2 | Howlett, Robert J. Jain, Lakhmi C. |
author2_role | edt edt |
author2_variant | r j h rj rjh l c j lc lcj |
author_facet | Howlett, Robert J. Jain, Lakhmi C. |
building | Verbundindex |
bvnumber | BV045149574 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-7908-1826-0 (OCoLC)1050945838 (DE-599)BVBBV045149574 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-7908-1826-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02597nmm a2200469zcb4500</leader><controlfield tag="001">BV045149574</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783790818260</subfield><subfield code="9">978-3-7908-1826-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7908-1826-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-7908-1826-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050945838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149574</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radial Basis Function Networks 2</subfield><subfield code="b">New Advances in Design</subfield><subfield code="c">edited by Robert J. Howlett, Lakhmi C. Jain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg</subfield><subfield code="b">Physica-Verlag HD</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 360 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in Fuzziness and Soft Computing</subfield><subfield code="v">67</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 2 contains a wide range of applications in the laboratory and case studies describing current industrial use. Both volumes will prove extremely useful to practitioners in the field, engineers, reserachers, students and technically accomplished managers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Howlett, Robert J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jain, Lakhmi C.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783790824834</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7908-1826-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030539273</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7908-1826-0</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7908-1826-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149574 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:04Z |
institution | BVB |
isbn | 9783790818260 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030539273 |
oclc_num | 1050945838 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XIX, 360 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Physica-Verlag HD |
record_format | marc |
series2 | Studies in Fuzziness and Soft Computing |
spelling | Radial Basis Function Networks 2 New Advances in Design edited by Robert J. Howlett, Lakhmi C. Jain Heidelberg Physica-Verlag HD 2001 1 Online-Ressource (XIX, 360 p) txt rdacontent c rdamedia cr rdacarrier Studies in Fuzziness and Soft Computing 67 The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 2 contains a wide range of applications in the laboratory and case studies describing current industrial use. Both volumes will prove extremely useful to practitioners in the field, engineers, reserachers, students and technically accomplished managers Computer Science Artificial Intelligence (incl. Robotics) Pattern Recognition Computer science Artificial intelligence Pattern recognition Howlett, Robert J. edt Jain, Lakhmi C. edt Erscheint auch als Druck-Ausgabe 9783790824834 https://doi.org/10.1007/978-3-7908-1826-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Radial Basis Function Networks 2 New Advances in Design Computer Science Artificial Intelligence (incl. Robotics) Pattern Recognition Computer science Artificial intelligence Pattern recognition |
title | Radial Basis Function Networks 2 New Advances in Design |
title_auth | Radial Basis Function Networks 2 New Advances in Design |
title_exact_search | Radial Basis Function Networks 2 New Advances in Design |
title_full | Radial Basis Function Networks 2 New Advances in Design edited by Robert J. Howlett, Lakhmi C. Jain |
title_fullStr | Radial Basis Function Networks 2 New Advances in Design edited by Robert J. Howlett, Lakhmi C. Jain |
title_full_unstemmed | Radial Basis Function Networks 2 New Advances in Design edited by Robert J. Howlett, Lakhmi C. Jain |
title_short | Radial Basis Function Networks 2 |
title_sort | radial basis function networks 2 new advances in design |
title_sub | New Advances in Design |
topic | Computer Science Artificial Intelligence (incl. Robotics) Pattern Recognition Computer science Artificial intelligence Pattern recognition |
topic_facet | Computer Science Artificial Intelligence (incl. Robotics) Pattern Recognition Computer science Artificial intelligence Pattern recognition |
url | https://doi.org/10.1007/978-3-7908-1826-0 |
work_keys_str_mv | AT howlettrobertj radialbasisfunctionnetworks2newadvancesindesign AT jainlakhmic radialbasisfunctionnetworks2newadvancesindesign |