Principles of Nonparametric Learning:
The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density esti...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Vienna
Springer Vienna
2002
|
Schriftenreihe: | International Centre for Mechanical Sciences, Courses and Lectures
434 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming. The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions |
Beschreibung: | 1 Online-Ressource (V, 335 p) |
ISBN: | 9783709125687 |
DOI: | 10.1007/978-3-7091-2568-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045149489 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783709125687 |9 978-3-7091-2568-7 | ||
024 | 7 | |a 10.1007/978-3-7091-2568-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-7091-2568-7 | ||
035 | |a (OCoLC)1050922210 | ||
035 | |a (DE-599)BVBBV045149489 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 621.382 |2 23 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
245 | 1 | 0 | |a Principles of Nonparametric Learning |c edited by László Györfi |
264 | 1 | |a Vienna |b Springer Vienna |c 2002 | |
300 | |a 1 Online-Ressource (V, 335 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a International Centre for Mechanical Sciences, Courses and Lectures |v 434 | |
520 | |a The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming. The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Probability and Statistics in Computer Science | |
650 | 4 | |a Pattern Recognition | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Pattern recognition | |
650 | 4 | |a Statistics | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtparametrisches Verfahren |0 (DE-588)4339273-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2001 |z Udine |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Nichtparametrisches Verfahren |0 (DE-588)4339273-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Györfi, László |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783211836880 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7091-2568-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030539187 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-7091-2568-7 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7091-2568-7 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178821293801472 |
---|---|
any_adam_object | |
author2 | Györfi, László |
author2_role | edt |
author2_variant | l g lg |
author_facet | Györfi, László |
building | Verbundindex |
bvnumber | BV045149489 |
classification_rvk | ST 301 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-7091-2568-7 (OCoLC)1050922210 (DE-599)BVBBV045149489 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-3-7091-2568-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02871nmm a2200601zcb4500</leader><controlfield tag="001">BV045149489</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709125687</subfield><subfield code="9">978-3-7091-2568-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-2568-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-7091-2568-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050922210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149489</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of Nonparametric Learning</subfield><subfield code="c">edited by László Györfi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna</subfield><subfield code="b">Springer Vienna</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (V, 335 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International Centre for Mechanical Sciences, Courses and Lectures</subfield><subfield code="v">434</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming. The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability and Statistics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtparametrisches Verfahren</subfield><subfield code="0">(DE-588)4339273-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2001</subfield><subfield code="z">Udine</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtparametrisches Verfahren</subfield><subfield code="0">(DE-588)4339273-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Györfi, László</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783211836880</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-2568-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030539187</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-2568-7</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7091-2568-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2001 Udine gnd-content |
genre_facet | Konferenzschrift 2001 Udine |
id | DE-604.BV045149489 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:04Z |
institution | BVB |
isbn | 9783709125687 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030539187 |
oclc_num | 1050922210 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (V, 335 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Vienna |
record_format | marc |
series2 | International Centre for Mechanical Sciences, Courses and Lectures |
spelling | Principles of Nonparametric Learning edited by László Györfi Vienna Springer Vienna 2002 1 Online-Ressource (V, 335 p) txt rdacontent c rdamedia cr rdacarrier International Centre for Mechanical Sciences, Courses and Lectures 434 The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming. The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions Engineering Signal, Image and Speech Processing Probability and Statistics in Computer Science Pattern Recognition Statistical Theory and Methods Mathematical statistics Pattern recognition Statistics Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Nichtparametrisches Verfahren (DE-588)4339273-8 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2001 Udine gnd-content Maschinelles Lernen (DE-588)4193754-5 s Nichtparametrisches Verfahren (DE-588)4339273-8 s 2\p DE-604 Györfi, László edt Erscheint auch als Druck-Ausgabe 9783211836880 https://doi.org/10.1007/978-3-7091-2568-7 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Principles of Nonparametric Learning Engineering Signal, Image and Speech Processing Probability and Statistics in Computer Science Pattern Recognition Statistical Theory and Methods Mathematical statistics Pattern recognition Statistics Maschinelles Lernen (DE-588)4193754-5 gnd Nichtparametrisches Verfahren (DE-588)4339273-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4339273-8 (DE-588)1071861417 |
title | Principles of Nonparametric Learning |
title_auth | Principles of Nonparametric Learning |
title_exact_search | Principles of Nonparametric Learning |
title_full | Principles of Nonparametric Learning edited by László Györfi |
title_fullStr | Principles of Nonparametric Learning edited by László Györfi |
title_full_unstemmed | Principles of Nonparametric Learning edited by László Györfi |
title_short | Principles of Nonparametric Learning |
title_sort | principles of nonparametric learning |
topic | Engineering Signal, Image and Speech Processing Probability and Statistics in Computer Science Pattern Recognition Statistical Theory and Methods Mathematical statistics Pattern recognition Statistics Maschinelles Lernen (DE-588)4193754-5 gnd Nichtparametrisches Verfahren (DE-588)4339273-8 gnd |
topic_facet | Engineering Signal, Image and Speech Processing Probability and Statistics in Computer Science Pattern Recognition Statistical Theory and Methods Mathematical statistics Pattern recognition Statistics Maschinelles Lernen Nichtparametrisches Verfahren Konferenzschrift 2001 Udine |
url | https://doi.org/10.1007/978-3-7091-2568-7 |
work_keys_str_mv | AT gyorfilaszlo principlesofnonparametriclearning |