Dynamics in One Complex Variable: Introductory Lectures
This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. It is based on introductory lectures given by the author at Stony Brook, NY, in the past ten years. The subject is large and r...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
2000
|
Ausgabe: | 2nd Edition |
Schlagworte: | |
Online-Zugang: | BTU01 FHI01 Volltext |
Zusammenfassung: | This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. It is based on introductory lectures given by the author at Stony Brook, NY, in the past ten years. The subject is large and rapidly growing. These notes are intended to introduce the reader to some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. The exposition is clear and enriched by many beautiful illustrations |
Beschreibung: | 1 Online-Ressource (VII, 257 p) |
ISBN: | 9783663080923 |
DOI: | 10.1007/978-3-663-08092-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045149470 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783663080923 |9 978-3-663-08092-3 | ||
024 | 7 | |a 10.1007/978-3-663-08092-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-663-08092-3 | ||
035 | |a (OCoLC)864083553 | ||
035 | |a (DE-599)BVBBV045149470 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Milnor, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamics in One Complex Variable |b Introductory Lectures |c by John Milnor |
250 | |a 2nd Edition | ||
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 2000 | |
300 | |a 1 Online-Ressource (VII, 257 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. It is based on introductory lectures given by the author at Stony Brook, NY, in the past ten years. The subject is large and rapidly growing. These notes are intended to introduce the reader to some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. The exposition is clear and enriched by many beautiful illustrations | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Engineering | |
650 | 0 | 7 | |a Fatou-Menge |0 (DE-588)4414549-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Julia-Menge |0 (DE-588)4431306-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iterierte Abbildung |0 (DE-588)4162626-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 0 | 1 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |D s |
689 | 0 | 2 | |a Iterierte Abbildung |0 (DE-588)4162626-6 |D s |
689 | 0 | 3 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |D s |
689 | 0 | 4 | |a Julia-Menge |0 (DE-588)4431306-8 |D s |
689 | 0 | 5 | |a Fatou-Menge |0 (DE-588)4414549-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |D s |
689 | 1 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783528131302 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-08092-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030539168 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-663-08092-3 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-663-08092-3 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178821259198464 |
---|---|
any_adam_object | |
author | Milnor, John |
author_facet | Milnor, John |
author_role | aut |
author_sort | Milnor, John |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV045149470 |
classification_rvk | SK 750 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-663-08092-3 (OCoLC)864083553 (DE-599)BVBBV045149470 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-663-08092-3 |
edition | 2nd Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03764nmm a2200757zc 4500</leader><controlfield tag="001">BV045149470</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663080923</subfield><subfield code="9">978-3-663-08092-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-08092-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-663-08092-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864083553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149470</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Milnor, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics in One Complex Variable</subfield><subfield code="b">Introductory Lectures</subfield><subfield code="c">by John Milnor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 257 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. It is based on introductory lectures given by the author at Stony Brook, NY, in the past ten years. The subject is large and rapidly growing. These notes are intended to introduce the reader to some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. The exposition is clear and enriched by many beautiful illustrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fatou-Menge</subfield><subfield code="0">(DE-588)4414549-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Julia-Menge</subfield><subfield code="0">(DE-588)4431306-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iterierte Abbildung</subfield><subfield code="0">(DE-588)4162626-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Iterierte Abbildung</subfield><subfield code="0">(DE-588)4162626-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Julia-Menge</subfield><subfield code="0">(DE-588)4431306-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Fatou-Menge</subfield><subfield code="0">(DE-588)4414549-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783528131302</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-08092-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030539168</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-663-08092-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-663-08092-3</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149470 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:03Z |
institution | BVB |
isbn | 9783663080923 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030539168 |
oclc_num | 864083553 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (VII, 257 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
spelling | Milnor, John Verfasser aut Dynamics in One Complex Variable Introductory Lectures by John Milnor 2nd Edition Wiesbaden Vieweg+Teubner Verlag 2000 1 Online-Ressource (VII, 257 p) txt rdacontent c rdamedia cr rdacarrier This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. It is based on introductory lectures given by the author at Stony Brook, NY, in the past ten years. The subject is large and rapidly growing. These notes are intended to introduce the reader to some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. The exposition is clear and enriched by many beautiful illustrations Engineering Engineering, general Fatou-Menge (DE-588)4414549-4 gnd rswk-swf Julia-Menge (DE-588)4431306-8 gnd rswk-swf Fixpunkttheorie (DE-588)4293945-8 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf Iterierte Abbildung (DE-588)4162626-6 gnd rswk-swf Holomorphe Abbildung (DE-588)4160471-4 gnd rswk-swf Iteration (DE-588)4123457-1 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 s Holomorphe Abbildung (DE-588)4160471-4 s Iterierte Abbildung (DE-588)4162626-6 s Fixpunkttheorie (DE-588)4293945-8 s Julia-Menge (DE-588)4431306-8 s Fatou-Menge (DE-588)4414549-4 s 1\p DE-604 Iteration (DE-588)4123457-1 s 2\p DE-604 Fraktal (DE-588)4123220-3 s 3\p DE-604 Funktionentheorie (DE-588)4018935-1 s 4\p DE-604 Erscheint auch als Druck-Ausgabe 9783528131302 https://doi.org/10.1007/978-3-663-08092-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Milnor, John Dynamics in One Complex Variable Introductory Lectures Engineering Engineering, general Fatou-Menge (DE-588)4414549-4 gnd Julia-Menge (DE-588)4431306-8 gnd Fixpunkttheorie (DE-588)4293945-8 gnd Riemannsche Fläche (DE-588)4049991-1 gnd Iterierte Abbildung (DE-588)4162626-6 gnd Holomorphe Abbildung (DE-588)4160471-4 gnd Iteration (DE-588)4123457-1 gnd Funktionentheorie (DE-588)4018935-1 gnd Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4414549-4 (DE-588)4431306-8 (DE-588)4293945-8 (DE-588)4049991-1 (DE-588)4162626-6 (DE-588)4160471-4 (DE-588)4123457-1 (DE-588)4018935-1 (DE-588)4123220-3 |
title | Dynamics in One Complex Variable Introductory Lectures |
title_auth | Dynamics in One Complex Variable Introductory Lectures |
title_exact_search | Dynamics in One Complex Variable Introductory Lectures |
title_full | Dynamics in One Complex Variable Introductory Lectures by John Milnor |
title_fullStr | Dynamics in One Complex Variable Introductory Lectures by John Milnor |
title_full_unstemmed | Dynamics in One Complex Variable Introductory Lectures by John Milnor |
title_short | Dynamics in One Complex Variable |
title_sort | dynamics in one complex variable introductory lectures |
title_sub | Introductory Lectures |
topic | Engineering Engineering, general Fatou-Menge (DE-588)4414549-4 gnd Julia-Menge (DE-588)4431306-8 gnd Fixpunkttheorie (DE-588)4293945-8 gnd Riemannsche Fläche (DE-588)4049991-1 gnd Iterierte Abbildung (DE-588)4162626-6 gnd Holomorphe Abbildung (DE-588)4160471-4 gnd Iteration (DE-588)4123457-1 gnd Funktionentheorie (DE-588)4018935-1 gnd Fraktal (DE-588)4123220-3 gnd |
topic_facet | Engineering Engineering, general Fatou-Menge Julia-Menge Fixpunkttheorie Riemannsche Fläche Iterierte Abbildung Holomorphe Abbildung Iteration Funktionentheorie Fraktal |
url | https://doi.org/10.1007/978-3-663-08092-3 |
work_keys_str_mv | AT milnorjohn dynamicsinonecomplexvariableintroductorylectures |