Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson’s Equation
"For he who knows not mathematics cannot know any other sciences; what is more, he cannot discover his own ignorance or find its proper remedies. " [Opus Majus] Roger Bacon (1214-1294) The material presented in these monographs is the outcome of the author's long-standing interest in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | "For he who knows not mathematics cannot know any other sciences; what is more, he cannot discover his own ignorance or find its proper remedies. " [Opus Majus] Roger Bacon (1214-1294) The material presented in these monographs is the outcome of the author's long-standing interest in the analytical modelling of problems in mechanics by appeal to the theory of partial differential equations. The impetus for wri ting these volumes was the opportunity to teach the subject matter to both undergraduate and graduate students in engineering at several universities. The approach is distinctly different to that which would adopted should such a course be given to students in pure mathematics; in this sense, the teaching of partial differential equations within an engineering curriculum should be viewed in the broader perspective of "The Modelling of Problems in Engineering" . An engineering student should be given the opportunity to appreciate how the various combination of balance laws, conservation equa tions, kinematic constraints, constitutive responses, thermodynamic restric tions, etc. , culminates in the development of a partial differential equation, or sets of partial differential equations, with potential for applications to en gineering problems. This ability to distill all the diverse information ab out a physical or mechanical process into partial differential equations is a par ticular attraction of the subject area |
Beschreibung: | 1 Online-Ressource (XVIII, 698 p) |
ISBN: | 9783662092057 |
DOI: | 10.1007/978-3-662-09205-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045149454 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662092057 |9 978-3-662-09205-7 | ||
024 | 7 | |a 10.1007/978-3-662-09205-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-662-09205-7 | ||
035 | |a (OCoLC)1050952516 | ||
035 | |a (DE-599)BVBBV045149454 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 621 |2 23 | |
100 | 1 | |a Selvadurai, A. P. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial Differential Equations in Mechanics 2 |b The Biharmonic Equation, Poisson’s Equation |c by A. P. S. Selvadurai |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XVIII, 698 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "For he who knows not mathematics cannot know any other sciences; what is more, he cannot discover his own ignorance or find its proper remedies. " [Opus Majus] Roger Bacon (1214-1294) The material presented in these monographs is the outcome of the author's long-standing interest in the analytical modelling of problems in mechanics by appeal to the theory of partial differential equations. The impetus for wri ting these volumes was the opportunity to teach the subject matter to both undergraduate and graduate students in engineering at several universities. The approach is distinctly different to that which would adopted should such a course be given to students in pure mathematics; in this sense, the teaching of partial differential equations within an engineering curriculum should be viewed in the broader perspective of "The Modelling of Problems in Engineering" . An engineering student should be given the opportunity to appreciate how the various combination of balance laws, conservation equa tions, kinematic constraints, constitutive responses, thermodynamic restric tions, etc. , culminates in the development of a partial differential equation, or sets of partial differential equations, with potential for applications to en gineering problems. This ability to distill all the diverse information ab out a physical or mechanical process into partial differential equations is a par ticular attraction of the subject area | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Mechanical Engineering | |
650 | 4 | |a Analysis | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Analysis (Mathematics) | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Continuum mechanics | |
650 | 4 | |a Mechanical engineering | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642086670 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09205-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030539152 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-09205-7 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-09205-7 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178821219352576 |
---|---|
any_adam_object | |
author | Selvadurai, A. P. S. |
author_facet | Selvadurai, A. P. S. |
author_role | aut |
author_sort | Selvadurai, A. P. S. |
author_variant | a p s s aps apss |
building | Verbundindex |
bvnumber | BV045149454 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-662-09205-7 (OCoLC)1050952516 (DE-599)BVBBV045149454 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-3-662-09205-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03509nmm a2200565zc 4500</leader><controlfield tag="001">BV045149454</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662092057</subfield><subfield code="9">978-3-662-09205-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09205-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-662-09205-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050952516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Selvadurai, A. P. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations in Mechanics 2</subfield><subfield code="b">The Biharmonic Equation, Poisson’s Equation</subfield><subfield code="c">by A. P. S. Selvadurai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 698 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"For he who knows not mathematics cannot know any other sciences; what is more, he cannot discover his own ignorance or find its proper remedies. " [Opus Majus] Roger Bacon (1214-1294) The material presented in these monographs is the outcome of the author's long-standing interest in the analytical modelling of problems in mechanics by appeal to the theory of partial differential equations. The impetus for wri ting these volumes was the opportunity to teach the subject matter to both undergraduate and graduate students in engineering at several universities. The approach is distinctly different to that which would adopted should such a course be given to students in pure mathematics; in this sense, the teaching of partial differential equations within an engineering curriculum should be viewed in the broader perspective of "The Modelling of Problems in Engineering" . An engineering student should be given the opportunity to appreciate how the various combination of balance laws, conservation equa tions, kinematic constraints, constitutive responses, thermodynamic restric tions, etc. , culminates in the development of a partial differential equation, or sets of partial differential equations, with potential for applications to en gineering problems. This ability to distill all the diverse information ab out a physical or mechanical process into partial differential equations is a par ticular attraction of the subject area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical engineering</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642086670</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09205-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030539152</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-09205-7</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-09205-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149454 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:03Z |
institution | BVB |
isbn | 9783662092057 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030539152 |
oclc_num | 1050952516 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XVIII, 698 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Selvadurai, A. P. S. Verfasser aut Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation by A. P. S. Selvadurai Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XVIII, 698 p) txt rdacontent c rdamedia cr rdacarrier "For he who knows not mathematics cannot know any other sciences; what is more, he cannot discover his own ignorance or find its proper remedies. " [Opus Majus] Roger Bacon (1214-1294) The material presented in these monographs is the outcome of the author's long-standing interest in the analytical modelling of problems in mechanics by appeal to the theory of partial differential equations. The impetus for wri ting these volumes was the opportunity to teach the subject matter to both undergraduate and graduate students in engineering at several universities. The approach is distinctly different to that which would adopted should such a course be given to students in pure mathematics; in this sense, the teaching of partial differential equations within an engineering curriculum should be viewed in the broader perspective of "The Modelling of Problems in Engineering" . An engineering student should be given the opportunity to appreciate how the various combination of balance laws, conservation equa tions, kinematic constraints, constitutive responses, thermodynamic restric tions, etc. , culminates in the development of a partial differential equation, or sets of partial differential equations, with potential for applications to en gineering problems. This ability to distill all the diverse information ab out a physical or mechanical process into partial differential equations is a par ticular attraction of the subject area Engineering Mechanical Engineering Analysis Continuum Mechanics and Mechanics of Materials Appl.Mathematics/Computational Methods of Engineering Partial Differential Equations Mechanics Mathematical analysis Analysis (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Continuum mechanics Mechanical engineering Erscheint auch als Druck-Ausgabe 9783642086670 https://doi.org/10.1007/978-3-662-09205-7 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Selvadurai, A. P. S. Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation Engineering Mechanical Engineering Analysis Continuum Mechanics and Mechanics of Materials Appl.Mathematics/Computational Methods of Engineering Partial Differential Equations Mechanics Mathematical analysis Analysis (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Continuum mechanics Mechanical engineering |
title | Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation |
title_auth | Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation |
title_exact_search | Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation |
title_full | Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation by A. P. S. Selvadurai |
title_fullStr | Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation by A. P. S. Selvadurai |
title_full_unstemmed | Partial Differential Equations in Mechanics 2 The Biharmonic Equation, Poisson’s Equation by A. P. S. Selvadurai |
title_short | Partial Differential Equations in Mechanics 2 |
title_sort | partial differential equations in mechanics 2 the biharmonic equation poisson s equation |
title_sub | The Biharmonic Equation, Poisson’s Equation |
topic | Engineering Mechanical Engineering Analysis Continuum Mechanics and Mechanics of Materials Appl.Mathematics/Computational Methods of Engineering Partial Differential Equations Mechanics Mathematical analysis Analysis (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Continuum mechanics Mechanical engineering |
topic_facet | Engineering Mechanical Engineering Analysis Continuum Mechanics and Mechanics of Materials Appl.Mathematics/Computational Methods of Engineering Partial Differential Equations Mechanics Mathematical analysis Analysis (Mathematics) Partial differential equations Applied mathematics Engineering mathematics Continuum mechanics Mechanical engineering |
url | https://doi.org/10.1007/978-3-662-09205-7 |
work_keys_str_mv | AT selvaduraiaps partialdifferentialequationsinmechanics2thebiharmonicequationpoissonsequation |