Structural Reliability: Statistical Learning Perspectives
This monograph presents an original approach to Structural Reliability from the perspective of Statistical Learning Theory. It proposes new methods for solving the reliability problem utilizing the recent developments in Computational Learning Theory, such as Neural Networks and Support Vector machi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schriftenreihe: | Lecture Notes in Applied and Computational Mechanics
17 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | This monograph presents an original approach to Structural Reliability from the perspective of Statistical Learning Theory. It proposes new methods for solving the reliability problem utilizing the recent developments in Computational Learning Theory, such as Neural Networks and Support Vector machines. It also demonstrates important issues on the management of samples in Monte Carlo simulation for structural reliability analysis purposes and examines the treatment of the structural reliability problem as a pattern recognition or classification task. This carefully written monograph is aiming at researchers and students in civil and mechanical engineering, especially in reliability engineering, structural analysis, or statistical learning |
Beschreibung: | 1 Online-Ressource (XIV, 257 p) |
ISBN: | 9783540409878 |
DOI: | 10.1007/978-3-540-40987-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045149187 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783540409878 |9 978-3-540-40987-8 | ||
024 | 7 | |a 10.1007/978-3-540-40987-8 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-540-40987-8 | ||
035 | |a (OCoLC)1184486764 | ||
035 | |a (DE-599)BVBBV045149187 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 690 |2 23 | |
100 | 1 | |a Hurtado, Jorge E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Structural Reliability |b Statistical Learning Perspectives |c by Jorge E. Hurtado |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XIV, 257 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Applied and Computational Mechanics |v 17 | |
520 | |a This monograph presents an original approach to Structural Reliability from the perspective of Statistical Learning Theory. It proposes new methods for solving the reliability problem utilizing the recent developments in Computational Learning Theory, such as Neural Networks and Support Vector machines. It also demonstrates important issues on the management of samples in Monte Carlo simulation for structural reliability analysis purposes and examines the treatment of the structural reliability problem as a pattern recognition or classification task. This carefully written monograph is aiming at researchers and students in civil and mechanical engineering, especially in reliability engineering, structural analysis, or statistical learning | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Building Construction | |
650 | 4 | |a Theoretical and Applied Mechanics | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Structural Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mechanics, Applied | |
650 | 4 | |a Structural mechanics | |
650 | 4 | |a Buildings / Design and construction | |
650 | 4 | |a Building | |
650 | 4 | |a Construction | |
650 | 4 | |a Engineering, Architectural | |
650 | 0 | 7 | |a Strukturmechanik |0 (DE-588)4126904-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zuverlässigkeit |0 (DE-588)4059245-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strukturmechanik |0 (DE-588)4126904-4 |D s |
689 | 0 | 1 | |a Zuverlässigkeit |0 (DE-588)4059245-5 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642535765 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-40987-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538886 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-540-40987-8 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-40987-8 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178820526243840 |
---|---|
any_adam_object | |
author | Hurtado, Jorge E. |
author_facet | Hurtado, Jorge E. |
author_role | aut |
author_sort | Hurtado, Jorge E. |
author_variant | j e h je jeh |
building | Verbundindex |
bvnumber | BV045149187 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-540-40987-8 (OCoLC)1184486764 (DE-599)BVBBV045149187 |
dewey-full | 690 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 690 - Construction of buildings |
dewey-raw | 690 |
dewey-search | 690 |
dewey-sort | 3690 |
dewey-tens | 690 - Construction of buildings |
discipline | Bauingenieurwesen |
doi_str_mv | 10.1007/978-3-540-40987-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03303nmm a2200673zcb4500</leader><controlfield tag="001">BV045149187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540409878</subfield><subfield code="9">978-3-540-40987-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-40987-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-540-40987-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184486764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149187</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hurtado, Jorge E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural Reliability</subfield><subfield code="b">Statistical Learning Perspectives</subfield><subfield code="c">by Jorge E. Hurtado</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 257 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Applied and Computational Mechanics</subfield><subfield code="v">17</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph presents an original approach to Structural Reliability from the perspective of Statistical Learning Theory. It proposes new methods for solving the reliability problem utilizing the recent developments in Computational Learning Theory, such as Neural Networks and Support Vector machines. It also demonstrates important issues on the management of samples in Monte Carlo simulation for structural reliability analysis purposes and examines the treatment of the structural reliability problem as a pattern recognition or classification task. This carefully written monograph is aiming at researchers and students in civil and mechanical engineering, especially in reliability engineering, structural analysis, or statistical learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building Construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Applied Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buildings / Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, Architectural</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zuverlässigkeit</subfield><subfield code="0">(DE-588)4059245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zuverlässigkeit</subfield><subfield code="0">(DE-588)4059245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642535765</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-40987-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538886</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-40987-8</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-40987-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149187 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:03Z |
institution | BVB |
isbn | 9783540409878 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538886 |
oclc_num | 1184486764 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XIV, 257 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Applied and Computational Mechanics |
spelling | Hurtado, Jorge E. Verfasser aut Structural Reliability Statistical Learning Perspectives by Jorge E. Hurtado Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XIV, 257 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Applied and Computational Mechanics 17 This monograph presents an original approach to Structural Reliability from the perspective of Statistical Learning Theory. It proposes new methods for solving the reliability problem utilizing the recent developments in Computational Learning Theory, such as Neural Networks and Support Vector machines. It also demonstrates important issues on the management of samples in Monte Carlo simulation for structural reliability analysis purposes and examines the treatment of the structural reliability problem as a pattern recognition or classification task. This carefully written monograph is aiming at researchers and students in civil and mechanical engineering, especially in reliability engineering, structural analysis, or statistical learning Engineering Building Construction Theoretical and Applied Mechanics Artificial Intelligence (incl. Robotics) Computational Intelligence Structural Mechanics Artificial intelligence Computational intelligence Mechanics Mechanics, Applied Structural mechanics Buildings / Design and construction Building Construction Engineering, Architectural Strukturmechanik (DE-588)4126904-4 gnd rswk-swf Zuverlässigkeit (DE-588)4059245-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Strukturmechanik (DE-588)4126904-4 s Zuverlässigkeit (DE-588)4059245-5 s Maschinelles Lernen (DE-588)4193754-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9783642535765 https://doi.org/10.1007/978-3-540-40987-8 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hurtado, Jorge E. Structural Reliability Statistical Learning Perspectives Engineering Building Construction Theoretical and Applied Mechanics Artificial Intelligence (incl. Robotics) Computational Intelligence Structural Mechanics Artificial intelligence Computational intelligence Mechanics Mechanics, Applied Structural mechanics Buildings / Design and construction Building Construction Engineering, Architectural Strukturmechanik (DE-588)4126904-4 gnd Zuverlässigkeit (DE-588)4059245-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4126904-4 (DE-588)4059245-5 (DE-588)4193754-5 |
title | Structural Reliability Statistical Learning Perspectives |
title_auth | Structural Reliability Statistical Learning Perspectives |
title_exact_search | Structural Reliability Statistical Learning Perspectives |
title_full | Structural Reliability Statistical Learning Perspectives by Jorge E. Hurtado |
title_fullStr | Structural Reliability Statistical Learning Perspectives by Jorge E. Hurtado |
title_full_unstemmed | Structural Reliability Statistical Learning Perspectives by Jorge E. Hurtado |
title_short | Structural Reliability |
title_sort | structural reliability statistical learning perspectives |
title_sub | Statistical Learning Perspectives |
topic | Engineering Building Construction Theoretical and Applied Mechanics Artificial Intelligence (incl. Robotics) Computational Intelligence Structural Mechanics Artificial intelligence Computational intelligence Mechanics Mechanics, Applied Structural mechanics Buildings / Design and construction Building Construction Engineering, Architectural Strukturmechanik (DE-588)4126904-4 gnd Zuverlässigkeit (DE-588)4059245-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Engineering Building Construction Theoretical and Applied Mechanics Artificial Intelligence (incl. Robotics) Computational Intelligence Structural Mechanics Artificial intelligence Computational intelligence Mechanics Mechanics, Applied Structural mechanics Buildings / Design and construction Building Construction Engineering, Architectural Strukturmechanik Zuverlässigkeit Maschinelles Lernen |
url | https://doi.org/10.1007/978-3-540-40987-8 |
work_keys_str_mv | AT hurtadojorgee structuralreliabilitystatisticallearningperspectives |