Perceptual Metrics for Image Database Navigation:
The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2001
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors
594 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the "Earth Mover's Distance" (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way |
Beschreibung: | 1 Online-Ressource (XXIII, 137 p) |
ISBN: | 9781475733433 |
DOI: | 10.1007/978-1-4757-3343-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045149010 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475733433 |9 978-1-4757-3343-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3343-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4757-3343-3 | ||
035 | |a (OCoLC)1050951676 | ||
035 | |a (DE-599)BVBBV045149010 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 629.8 |2 23 | |
100 | 1 | |a Rubner, Yossi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Perceptual Metrics for Image Database Navigation |c by Yossi Rubner, Carlo Tomasi |
264 | 1 | |a Boston, MA |b Springer US |c 2001 | |
300 | |a 1 Online-Ressource (XXIII, 137 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |v 594 | |
520 | |a The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the "Earth Mover's Distance" (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Image Processing and Computer Vision | |
650 | 4 | |a Data Structures, Cryptology and Information Theory | |
650 | 4 | |a Engineering | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Image processing | |
650 | 4 | |a Control engineering | |
650 | 4 | |a Robotics | |
650 | 4 | |a Mechatronics | |
700 | 1 | |a Tomasi, Carlo |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781441948632 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3343-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538709 | ||
966 | e | |u https://doi.org/10.1007/978-1-4757-3343-3 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4757-3343-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819943235584 |
---|---|
any_adam_object | |
author | Rubner, Yossi Tomasi, Carlo |
author_facet | Rubner, Yossi Tomasi, Carlo |
author_role | aut aut |
author_sort | Rubner, Yossi |
author_variant | y r yr c t ct |
building | Verbundindex |
bvnumber | BV045149010 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4757-3343-3 (OCoLC)1050951676 (DE-599)BVBBV045149010 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1007/978-1-4757-3343-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03491nmm a2200541zcb4500</leader><controlfield tag="001">BV045149010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475733433</subfield><subfield code="9">978-1-4757-3343-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3343-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4757-3343-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050951676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubner, Yossi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perceptual Metrics for Image Database Navigation</subfield><subfield code="c">by Yossi Rubner, Carlo Tomasi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 137 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors</subfield><subfield code="v">594</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the "Earth Mover's Distance" (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing and Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures, Cryptology and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechatronics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomasi, Carlo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441948632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3343-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538709</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3343-3</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3343-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149010 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:02Z |
institution | BVB |
isbn | 9781475733433 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538709 |
oclc_num | 1050951676 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XXIII, 137 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors |
spelling | Rubner, Yossi Verfasser aut Perceptual Metrics for Image Database Navigation by Yossi Rubner, Carlo Tomasi Boston, MA Springer US 2001 1 Online-Ressource (XXIII, 137 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science, Robotics: Vision, Manipulation and Sensors 594 The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the "Earth Mover's Distance" (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way Engineering Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Image Processing and Computer Vision Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Image processing Control engineering Robotics Mechatronics Tomasi, Carlo aut Erscheint auch als Druck-Ausgabe 9781441948632 https://doi.org/10.1007/978-1-4757-3343-3 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rubner, Yossi Tomasi, Carlo Perceptual Metrics for Image Database Navigation Engineering Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Image Processing and Computer Vision Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Image processing Control engineering Robotics Mechatronics |
title | Perceptual Metrics for Image Database Navigation |
title_auth | Perceptual Metrics for Image Database Navigation |
title_exact_search | Perceptual Metrics for Image Database Navigation |
title_full | Perceptual Metrics for Image Database Navigation by Yossi Rubner, Carlo Tomasi |
title_fullStr | Perceptual Metrics for Image Database Navigation by Yossi Rubner, Carlo Tomasi |
title_full_unstemmed | Perceptual Metrics for Image Database Navigation by Yossi Rubner, Carlo Tomasi |
title_short | Perceptual Metrics for Image Database Navigation |
title_sort | perceptual metrics for image database navigation |
topic | Engineering Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Image Processing and Computer Vision Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Image processing Control engineering Robotics Mechatronics |
topic_facet | Engineering Control, Robotics, Mechatronics Artificial Intelligence (incl. Robotics) Image Processing and Computer Vision Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Image processing Control engineering Robotics Mechatronics |
url | https://doi.org/10.1007/978-1-4757-3343-3 |
work_keys_str_mv | AT rubneryossi perceptualmetricsforimagedatabasenavigation AT tomasicarlo perceptualmetricsforimagedatabasenavigation |