High-Accuracy CMOS Smart Temperature Sensors:
This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technolog...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | High-Accuracy CMOS Smart Temperature Sensors
595 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date |
Beschreibung: | 1 Online-Ressource (X, 121 p) |
ISBN: | 9781475731903 |
DOI: | 10.1007/978-1-4757-3190-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045148998 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781475731903 |9 978-1-4757-3190-3 | ||
024 | 7 | |a 10.1007/978-1-4757-3190-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4757-3190-3 | ||
035 | |a (OCoLC)1050939453 | ||
035 | |a (DE-599)BVBBV045148998 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 621.3815 |2 23 | |
100 | 1 | |a Bakker, Anton |e Verfasser |4 aut | |
245 | 1 | 0 | |a High-Accuracy CMOS Smart Temperature Sensors |c by Anton Bakker, Johan Huijsing |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (X, 121 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a High-Accuracy CMOS Smart Temperature Sensors |v 595 | |
520 | |a This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Circuits and Systems | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Electrical engineering | |
650 | 4 | |a Electronic circuits | |
650 | 0 | 7 | |a Analog-Digital-Umsetzer |0 (DE-588)4128359-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a CMOS |0 (DE-588)4010319-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a CMOS-Schaltung |0 (DE-588)4148111-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Temperatursensor |0 (DE-588)4184696-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a CMOS |0 (DE-588)4010319-5 |D s |
689 | 0 | 1 | |a Temperatursensor |0 (DE-588)4184696-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Analog-Digital-Umsetzer |0 (DE-588)4128359-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a CMOS-Schaltung |0 (DE-588)4148111-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Huijsing, Johan |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781441948625 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3190-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538697 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4757-3190-3 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4757-3190-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819923312640 |
---|---|
any_adam_object | |
author | Bakker, Anton Huijsing, Johan |
author_facet | Bakker, Anton Huijsing, Johan |
author_role | aut aut |
author_sort | Bakker, Anton |
author_variant | a b ab j h jh |
building | Verbundindex |
bvnumber | BV045148998 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4757-3190-3 (OCoLC)1050939453 (DE-599)BVBBV045148998 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4757-3190-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04078nmm a2200637zcb4500</leader><controlfield tag="001">BV045148998</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475731903</subfield><subfield code="9">978-1-4757-3190-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3190-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4757-3190-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050939453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148998</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bakker, Anton</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Accuracy CMOS Smart Temperature Sensors</subfield><subfield code="c">by Anton Bakker, Johan Huijsing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 121 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">High-Accuracy CMOS Smart Temperature Sensors</subfield><subfield code="v">595</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits and Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuits</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analog-Digital-Umsetzer</subfield><subfield code="0">(DE-588)4128359-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CMOS</subfield><subfield code="0">(DE-588)4010319-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CMOS-Schaltung</subfield><subfield code="0">(DE-588)4148111-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Temperatursensor</subfield><subfield code="0">(DE-588)4184696-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">CMOS</subfield><subfield code="0">(DE-588)4010319-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Temperatursensor</subfield><subfield code="0">(DE-588)4184696-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analog-Digital-Umsetzer</subfield><subfield code="0">(DE-588)4128359-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">CMOS-Schaltung</subfield><subfield code="0">(DE-588)4148111-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huijsing, Johan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441948625</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3190-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538697</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3190-3</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3190-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148998 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:02Z |
institution | BVB |
isbn | 9781475731903 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538697 |
oclc_num | 1050939453 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (X, 121 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series2 | High-Accuracy CMOS Smart Temperature Sensors |
spelling | Bakker, Anton Verfasser aut High-Accuracy CMOS Smart Temperature Sensors by Anton Bakker, Johan Huijsing Boston, MA Springer US 2000 1 Online-Ressource (X, 121 p) txt rdacontent c rdamedia cr rdacarrier High-Accuracy CMOS Smart Temperature Sensors 595 This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date Engineering Circuits and Systems Electrical Engineering Electrical engineering Electronic circuits Analog-Digital-Umsetzer (DE-588)4128359-4 gnd rswk-swf CMOS (DE-588)4010319-5 gnd rswk-swf CMOS-Schaltung (DE-588)4148111-2 gnd rswk-swf Temperatursensor (DE-588)4184696-5 gnd rswk-swf CMOS (DE-588)4010319-5 s Temperatursensor (DE-588)4184696-5 s 1\p DE-604 Analog-Digital-Umsetzer (DE-588)4128359-4 s 2\p DE-604 CMOS-Schaltung (DE-588)4148111-2 s 3\p DE-604 Huijsing, Johan aut Erscheint auch als Druck-Ausgabe 9781441948625 https://doi.org/10.1007/978-1-4757-3190-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bakker, Anton Huijsing, Johan High-Accuracy CMOS Smart Temperature Sensors Engineering Circuits and Systems Electrical Engineering Electrical engineering Electronic circuits Analog-Digital-Umsetzer (DE-588)4128359-4 gnd CMOS (DE-588)4010319-5 gnd CMOS-Schaltung (DE-588)4148111-2 gnd Temperatursensor (DE-588)4184696-5 gnd |
subject_GND | (DE-588)4128359-4 (DE-588)4010319-5 (DE-588)4148111-2 (DE-588)4184696-5 |
title | High-Accuracy CMOS Smart Temperature Sensors |
title_auth | High-Accuracy CMOS Smart Temperature Sensors |
title_exact_search | High-Accuracy CMOS Smart Temperature Sensors |
title_full | High-Accuracy CMOS Smart Temperature Sensors by Anton Bakker, Johan Huijsing |
title_fullStr | High-Accuracy CMOS Smart Temperature Sensors by Anton Bakker, Johan Huijsing |
title_full_unstemmed | High-Accuracy CMOS Smart Temperature Sensors by Anton Bakker, Johan Huijsing |
title_short | High-Accuracy CMOS Smart Temperature Sensors |
title_sort | high accuracy cmos smart temperature sensors |
topic | Engineering Circuits and Systems Electrical Engineering Electrical engineering Electronic circuits Analog-Digital-Umsetzer (DE-588)4128359-4 gnd CMOS (DE-588)4010319-5 gnd CMOS-Schaltung (DE-588)4148111-2 gnd Temperatursensor (DE-588)4184696-5 gnd |
topic_facet | Engineering Circuits and Systems Electrical Engineering Electrical engineering Electronic circuits Analog-Digital-Umsetzer CMOS CMOS-Schaltung Temperatursensor |
url | https://doi.org/10.1007/978-1-4757-3190-3 |
work_keys_str_mv | AT bakkeranton highaccuracycmossmarttemperaturesensors AT huijsingjohan highaccuracycmossmarttemperaturesensors |