Geometric Constraints for Object Detection and Delineation:
The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or sce...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science
530 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry |
Beschreibung: | 1 Online-Ressource (X, 265 p) |
ISBN: | 9781461552734 |
DOI: | 10.1007/978-1-4615-5273-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045148993 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461552734 |9 978-1-4615-5273-4 | ||
024 | 7 | |a 10.1007/978-1-4615-5273-4 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-5273-4 | ||
035 | |a (OCoLC)1050943347 | ||
035 | |a (DE-599)BVBBV045148993 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 910.285 |2 23 | |
100 | 1 | |a Shufelt, Jefferey |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Constraints for Object Detection and Delineation |c by Jefferey Shufelt |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (X, 265 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science |v 530 | |
520 | |a The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry | ||
650 | 4 | |a Geography | |
650 | 4 | |a Remote Sensing/Photogrammetry | |
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Computer Graphics | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Data Structures, Cryptology and Information Theory | |
650 | 4 | |a Geography | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Remote sensing | |
650 | 0 | 7 | |a Computerkartografie |0 (DE-588)4010451-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computerkartografie |0 (DE-588)4010451-5 |D s |
689 | 0 | 1 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461374053 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5273-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538692 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4615-5273-4 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4615-5273-4 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819918069760 |
---|---|
any_adam_object | |
author | Shufelt, Jefferey |
author_facet | Shufelt, Jefferey |
author_role | aut |
author_sort | Shufelt, Jefferey |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV045148993 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-5273-4 (OCoLC)1050943347 (DE-599)BVBBV045148993 |
dewey-full | 910.285 |
dewey-hundreds | 900 - History & geography |
dewey-ones | 910 - Geography and travel |
dewey-raw | 910.285 |
dewey-search | 910.285 |
dewey-sort | 3910.285 |
dewey-tens | 910 - Geography and travel |
discipline | Geographie |
doi_str_mv | 10.1007/978-1-4615-5273-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03854nmm a2200589zcb4500</leader><controlfield tag="001">BV045148993</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461552734</subfield><subfield code="9">978-1-4615-5273-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5273-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-5273-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050943347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">910.285</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shufelt, Jefferey</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Constraints for Object Detection and Delineation</subfield><subfield code="c">by Jefferey Shufelt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 265 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">530</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Sensing/Photogrammetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures, Cryptology and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerkartografie</subfield><subfield code="0">(DE-588)4010451-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computerkartografie</subfield><subfield code="0">(DE-588)4010451-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461374053</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5273-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538692</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-5273-4</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-5273-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148993 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:02Z |
institution | BVB |
isbn | 9781461552734 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538692 |
oclc_num | 1050943347 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (X, 265 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science |
spelling | Shufelt, Jefferey Verfasser aut Geometric Constraints for Object Detection and Delineation by Jefferey Shufelt Boston, MA Springer US 2000 1 Online-Ressource (X, 265 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science 530 The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry Geography Remote Sensing/Photogrammetry Computer Imaging, Vision, Pattern Recognition and Graphics Computer Graphics Artificial Intelligence (incl. Robotics) Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Computer graphics Remote sensing Computerkartografie (DE-588)4010451-5 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Computerkartografie (DE-588)4010451-5 s Bildverarbeitung (DE-588)4006684-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9781461374053 https://doi.org/10.1007/978-1-4615-5273-4 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shufelt, Jefferey Geometric Constraints for Object Detection and Delineation Geography Remote Sensing/Photogrammetry Computer Imaging, Vision, Pattern Recognition and Graphics Computer Graphics Artificial Intelligence (incl. Robotics) Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Computer graphics Remote sensing Computerkartografie (DE-588)4010451-5 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
subject_GND | (DE-588)4010451-5 (DE-588)4006684-8 |
title | Geometric Constraints for Object Detection and Delineation |
title_auth | Geometric Constraints for Object Detection and Delineation |
title_exact_search | Geometric Constraints for Object Detection and Delineation |
title_full | Geometric Constraints for Object Detection and Delineation by Jefferey Shufelt |
title_fullStr | Geometric Constraints for Object Detection and Delineation by Jefferey Shufelt |
title_full_unstemmed | Geometric Constraints for Object Detection and Delineation by Jefferey Shufelt |
title_short | Geometric Constraints for Object Detection and Delineation |
title_sort | geometric constraints for object detection and delineation |
topic | Geography Remote Sensing/Photogrammetry Computer Imaging, Vision, Pattern Recognition and Graphics Computer Graphics Artificial Intelligence (incl. Robotics) Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Computer graphics Remote sensing Computerkartografie (DE-588)4010451-5 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
topic_facet | Geography Remote Sensing/Photogrammetry Computer Imaging, Vision, Pattern Recognition and Graphics Computer Graphics Artificial Intelligence (incl. Robotics) Data Structures, Cryptology and Information Theory Data structures (Computer science) Artificial intelligence Computer graphics Remote sensing Computerkartografie Bildverarbeitung |
url | https://doi.org/10.1007/978-1-4615-5273-4 |
work_keys_str_mv | AT shufeltjefferey geometricconstraintsforobjectdetectionanddelineation |