Fuzzy Model Identification for Control:
Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima tion of uncertain nonlinear processes, the data-driven identification o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2003
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima tion of uncertain nonlinear processes, the data-driven identification offuzzy models alone sometimes yields complex and unrealistic models. Typically, this is due to the over-parameterization of the model and insufficient in formation content of the identification data set. These difficulties stem from a lack of initial a priori knowledge or information about the system to be modeled. To solve the problem of limited knowledge, in the area of modeling and identification, there is a tendency to blend information of different natures to employ as much knowledge for model building as possible. Hence, the incorporation of different types of a priori knowledge into the data-driven fuzzy model generation is a challenging and important task. Motivated by our research into this topic, our book presents new ap proaches to the construction of fuzzy models for model-based control. New model structures and identification algorithms are described for the effec tive use of heterogenous information in the form of numerical data, qualita tive knowledge and first-principle models. By exploiting the mathematical properties of the proposed model structures, such as invertibility and local linearity, new control algorithms will be presented |
Beschreibung: | 1 Online-Ressource (XI, 273 p) |
ISBN: | 9781461200277 |
DOI: | 10.1007/978-1-4612-0027-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045148788 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781461200277 |9 978-1-4612-0027-7 | ||
024 | 7 | |a 10.1007/978-1-4612-0027-7 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4612-0027-7 | ||
035 | |a (OCoLC)1050941246 | ||
035 | |a (DE-599)BVBBV045148788 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 629.8 |2 23 | |
100 | 1 | |a Abonyi, János |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fuzzy Model Identification for Control |c by János Abonyi |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2003 | |
300 | |a 1 Online-Ressource (XI, 273 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima tion of uncertain nonlinear processes, the data-driven identification offuzzy models alone sometimes yields complex and unrealistic models. Typically, this is due to the over-parameterization of the model and insufficient in formation content of the identification data set. These difficulties stem from a lack of initial a priori knowledge or information about the system to be modeled. To solve the problem of limited knowledge, in the area of modeling and identification, there is a tendency to blend information of different natures to employ as much knowledge for model building as possible. Hence, the incorporation of different types of a priori knowledge into the data-driven fuzzy model generation is a challenging and important task. Motivated by our research into this topic, our book presents new ap proaches to the construction of fuzzy models for model-based control. New model structures and identification algorithms are described for the effec tive use of heterogenous information in the form of numerical data, qualita tive knowledge and first-principle models. By exploiting the mathematical properties of the proposed model structures, such as invertibility and local linearity, new control algorithms will be presented | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Industrial Chemistry/Chemical Engineering | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Complexity | |
650 | 4 | |a Engineering | |
650 | 4 | |a Chemical engineering | |
650 | 4 | |a System theory | |
650 | 4 | |a Complexity, Computational | |
650 | 4 | |a Control engineering | |
650 | 4 | |a Robotics | |
650 | 4 | |a Mechatronics | |
650 | 0 | 7 | |a Fuzzy-Regelung |0 (DE-588)4395755-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fuzzy-Regelung |0 (DE-588)4395755-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461265795 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0027-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538487 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4612-0027-7 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4612-0027-7 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819346595840 |
---|---|
any_adam_object | |
author | Abonyi, János |
author_facet | Abonyi, János |
author_role | aut |
author_sort | Abonyi, János |
author_variant | j a ja |
building | Verbundindex |
bvnumber | BV045148788 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4612-0027-7 (OCoLC)1050941246 (DE-599)BVBBV045148788 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1007/978-1-4612-0027-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03482nmm a2200565zc 4500</leader><controlfield tag="001">BV045148788</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461200277</subfield><subfield code="9">978-1-4612-0027-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0027-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4612-0027-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050941246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148788</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abonyi, János</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy Model Identification for Control</subfield><subfield code="c">by János Abonyi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 273 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima tion of uncertain nonlinear processes, the data-driven identification offuzzy models alone sometimes yields complex and unrealistic models. Typically, this is due to the over-parameterization of the model and insufficient in formation content of the identification data set. These difficulties stem from a lack of initial a priori knowledge or information about the system to be modeled. To solve the problem of limited knowledge, in the area of modeling and identification, there is a tendency to blend information of different natures to employ as much knowledge for model building as possible. Hence, the incorporation of different types of a priori knowledge into the data-driven fuzzy model generation is a challenging and important task. Motivated by our research into this topic, our book presents new ap proaches to the construction of fuzzy models for model-based control. New model structures and identification algorithms are described for the effec tive use of heterogenous information in the form of numerical data, qualita tive knowledge and first-principle models. By exploiting the mathematical properties of the proposed model structures, such as invertibility and local linearity, new control algorithms will be presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Chemistry/Chemical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity, Computational</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechatronics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Regelung</subfield><subfield code="0">(DE-588)4395755-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fuzzy-Regelung</subfield><subfield code="0">(DE-588)4395755-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461265795</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0027-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538487</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4612-0027-7</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4612-0027-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148788 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:02Z |
institution | BVB |
isbn | 9781461200277 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538487 |
oclc_num | 1050941246 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XI, 273 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Abonyi, János Verfasser aut Fuzzy Model Identification for Control by János Abonyi Boston, MA Birkhäuser Boston 2003 1 Online-Ressource (XI, 273 p) txt rdacontent c rdamedia cr rdacarrier Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima tion of uncertain nonlinear processes, the data-driven identification offuzzy models alone sometimes yields complex and unrealistic models. Typically, this is due to the over-parameterization of the model and insufficient in formation content of the identification data set. These difficulties stem from a lack of initial a priori knowledge or information about the system to be modeled. To solve the problem of limited knowledge, in the area of modeling and identification, there is a tendency to blend information of different natures to employ as much knowledge for model building as possible. Hence, the incorporation of different types of a priori knowledge into the data-driven fuzzy model generation is a challenging and important task. Motivated by our research into this topic, our book presents new ap proaches to the construction of fuzzy models for model-based control. New model structures and identification algorithms are described for the effec tive use of heterogenous information in the form of numerical data, qualita tive knowledge and first-principle models. By exploiting the mathematical properties of the proposed model structures, such as invertibility and local linearity, new control algorithms will be presented Engineering Control, Robotics, Mechatronics Industrial Chemistry/Chemical Engineering Systems Theory, Control Complexity Chemical engineering System theory Complexity, Computational Control engineering Robotics Mechatronics Fuzzy-Regelung (DE-588)4395755-9 gnd rswk-swf Fuzzy-Regelung (DE-588)4395755-9 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9781461265795 https://doi.org/10.1007/978-1-4612-0027-7 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Abonyi, János Fuzzy Model Identification for Control Engineering Control, Robotics, Mechatronics Industrial Chemistry/Chemical Engineering Systems Theory, Control Complexity Chemical engineering System theory Complexity, Computational Control engineering Robotics Mechatronics Fuzzy-Regelung (DE-588)4395755-9 gnd |
subject_GND | (DE-588)4395755-9 |
title | Fuzzy Model Identification for Control |
title_auth | Fuzzy Model Identification for Control |
title_exact_search | Fuzzy Model Identification for Control |
title_full | Fuzzy Model Identification for Control by János Abonyi |
title_fullStr | Fuzzy Model Identification for Control by János Abonyi |
title_full_unstemmed | Fuzzy Model Identification for Control by János Abonyi |
title_short | Fuzzy Model Identification for Control |
title_sort | fuzzy model identification for control |
topic | Engineering Control, Robotics, Mechatronics Industrial Chemistry/Chemical Engineering Systems Theory, Control Complexity Chemical engineering System theory Complexity, Computational Control engineering Robotics Mechatronics Fuzzy-Regelung (DE-588)4395755-9 gnd |
topic_facet | Engineering Control, Robotics, Mechatronics Industrial Chemistry/Chemical Engineering Systems Theory, Control Complexity Chemical engineering System theory Complexity, Computational Control engineering Robotics Mechatronics Fuzzy-Regelung |
url | https://doi.org/10.1007/978-1-4612-0027-7 |
work_keys_str_mv | AT abonyijanos fuzzymodelidentificationforcontrol |