Fault Detection and Diagnosis in Industrial Systems:
Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on models constructed almost entirely from...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2001
|
Schriftenreihe: | Advanced Textbooks in Control and Signal Processing
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on models constructed almost entirely from process data. The goal of the book is to present the theoretical background and practical techniques for data-driven process monitoring. Process monitoring techniques presented include: Data-driven methods - principal component analysis, Fisher discriminant analysis, partial least squares and canonical variate analysis; Analytical Methods - parameter estimation, observer-based methods and parity relations; Knowledge-based methods - causal analysis, expert systems and pattern recognition. The text demonstrates the application of all of the data-driven process monitoring techniques to the Tennessee Eastman plant simulator - demonstrating the strengths and weaknesses of each approach in detail. This aids the reader in selecting the right method for his process application. Plant simulator and homework problems in which students apply the process monitoring techniques to a non-trivial simulated process, and can compare their performance with that obtained in the case studies in the text are included. A number of additional homework problems encourage the reader to implement and obtain a deeper understanding of the techniques. The reader will obtain a background in data-driven techniques for fault detection and diagnosis, including the ability to implement the techniques and to know how to select the right technique for a particular application |
Beschreibung: | 1 Online-Ressource (XIV, 279 p. 5 illus) |
ISBN: | 9781447103479 |
DOI: | 10.1007/978-1-4471-0347-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045148740 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781447103479 |9 978-1-4471-0347-9 | ||
024 | 7 | |a 10.1007/978-1-4471-0347-9 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4471-0347-9 | ||
035 | |a (OCoLC)1050952293 | ||
035 | |a (DE-599)BVBBV045148740 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 629.8 |2 23 | |
084 | |a VN 7000 |0 (DE-625)147598:253 |2 rvk | ||
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
084 | |a ZQ 9910 |0 (DE-625)158192: |2 rvk | ||
100 | 1 | |a Chiang, Leo H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fault Detection and Diagnosis in Industrial Systems |c by Leo H. Chiang, Evan L. Russell, Richard D. Braatz |
264 | 1 | |a London |b Springer London |c 2001 | |
300 | |a 1 Online-Ressource (XIV, 279 p. 5 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Textbooks in Control and Signal Processing | |
520 | |a Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on models constructed almost entirely from process data. The goal of the book is to present the theoretical background and practical techniques for data-driven process monitoring. Process monitoring techniques presented include: Data-driven methods - principal component analysis, Fisher discriminant analysis, partial least squares and canonical variate analysis; Analytical Methods - parameter estimation, observer-based methods and parity relations; Knowledge-based methods - causal analysis, expert systems and pattern recognition. The text demonstrates the application of all of the data-driven process monitoring techniques to the Tennessee Eastman plant simulator - demonstrating the strengths and weaknesses of each approach in detail. This aids the reader in selecting the right method for his process application. Plant simulator and homework problems in which students apply the process monitoring techniques to a non-trivial simulated process, and can compare their performance with that obtained in the case studies in the text are included. A number of additional homework problems encourage the reader to implement and obtain a deeper understanding of the techniques. The reader will obtain a background in data-driven techniques for fault detection and diagnosis, including the ability to implement the techniques and to know how to select the right technique for a particular application | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Control | |
650 | 4 | |a Data Structures | |
650 | 4 | |a Industrial Chemistry/Chemical Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Chemical engineering | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Control engineering | |
650 | 0 | 7 | |a Prozessüberwachung |0 (DE-588)4133922-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensbasiertes System |0 (DE-588)4197554-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fehlererkennung |0 (DE-588)4133764-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 0 | 1 | |a Prozessüberwachung |0 (DE-588)4133922-8 |D s |
689 | 0 | 2 | |a Fehlererkennung |0 (DE-588)4133764-5 |D s |
689 | 0 | 3 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 1 | 1 | |a Prozessüberwachung |0 (DE-588)4133922-8 |D s |
689 | 1 | 2 | |a Fehlererkennung |0 (DE-588)4133764-5 |D s |
689 | 1 | 3 | |a Wissensbasiertes System |0 (DE-588)4197554-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Russell, Evan L. |4 aut | |
700 | 1 | |a Braatz, Richard D. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781852333270 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0347-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538439 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4471-0347-9 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-0347-9 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819227058176 |
---|---|
any_adam_object | |
author | Chiang, Leo H. Russell, Evan L. Braatz, Richard D. |
author_facet | Chiang, Leo H. Russell, Evan L. Braatz, Richard D. |
author_role | aut aut aut |
author_sort | Chiang, Leo H. |
author_variant | l h c lh lhc e l r el elr r d b rd rdb |
building | Verbundindex |
bvnumber | BV045148740 |
classification_rvk | VN 7000 VN 7300 ZQ 9910 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4471-0347-9 (OCoLC)1050952293 (DE-599)BVBBV045148740 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1007/978-1-4471-0347-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04691nmm a2200745zc 4500</leader><controlfield tag="001">BV045148740</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447103479</subfield><subfield code="9">978-1-4471-0347-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0347-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4471-0347-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050952293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148740</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7000</subfield><subfield code="0">(DE-625)147598:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 9910</subfield><subfield code="0">(DE-625)158192:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiang, Leo H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fault Detection and Diagnosis in Industrial Systems</subfield><subfield code="c">by Leo H. Chiang, Evan L. Russell, Richard D. Braatz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 279 p. 5 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Textbooks in Control and Signal Processing</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on models constructed almost entirely from process data. The goal of the book is to present the theoretical background and practical techniques for data-driven process monitoring. Process monitoring techniques presented include: Data-driven methods - principal component analysis, Fisher discriminant analysis, partial least squares and canonical variate analysis; Analytical Methods - parameter estimation, observer-based methods and parity relations; Knowledge-based methods - causal analysis, expert systems and pattern recognition. The text demonstrates the application of all of the data-driven process monitoring techniques to the Tennessee Eastman plant simulator - demonstrating the strengths and weaknesses of each approach in detail. This aids the reader in selecting the right method for his process application. Plant simulator and homework problems in which students apply the process monitoring techniques to a non-trivial simulated process, and can compare their performance with that obtained in the case studies in the text are included. A number of additional homework problems encourage the reader to implement and obtain a deeper understanding of the techniques. The reader will obtain a background in data-driven techniques for fault detection and diagnosis, including the ability to implement the techniques and to know how to select the right technique for a particular application</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Chemistry/Chemical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessüberwachung</subfield><subfield code="0">(DE-588)4133922-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensbasiertes System</subfield><subfield code="0">(DE-588)4197554-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fehlererkennung</subfield><subfield code="0">(DE-588)4133764-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prozessüberwachung</subfield><subfield code="0">(DE-588)4133922-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fehlererkennung</subfield><subfield code="0">(DE-588)4133764-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Prozessüberwachung</subfield><subfield code="0">(DE-588)4133922-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Fehlererkennung</subfield><subfield code="0">(DE-588)4133764-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Wissensbasiertes System</subfield><subfield code="0">(DE-588)4197554-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russell, Evan L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Braatz, Richard D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781852333270</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0347-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538439</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0347-9</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0347-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148740 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:02Z |
institution | BVB |
isbn | 9781447103479 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538439 |
oclc_num | 1050952293 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XIV, 279 p. 5 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer London |
record_format | marc |
series2 | Advanced Textbooks in Control and Signal Processing |
spelling | Chiang, Leo H. Verfasser aut Fault Detection and Diagnosis in Industrial Systems by Leo H. Chiang, Evan L. Russell, Richard D. Braatz London Springer London 2001 1 Online-Ressource (XIV, 279 p. 5 illus) txt rdacontent c rdamedia cr rdacarrier Advanced Textbooks in Control and Signal Processing Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on models constructed almost entirely from process data. The goal of the book is to present the theoretical background and practical techniques for data-driven process monitoring. Process monitoring techniques presented include: Data-driven methods - principal component analysis, Fisher discriminant analysis, partial least squares and canonical variate analysis; Analytical Methods - parameter estimation, observer-based methods and parity relations; Knowledge-based methods - causal analysis, expert systems and pattern recognition. The text demonstrates the application of all of the data-driven process monitoring techniques to the Tennessee Eastman plant simulator - demonstrating the strengths and weaknesses of each approach in detail. This aids the reader in selecting the right method for his process application. Plant simulator and homework problems in which students apply the process monitoring techniques to a non-trivial simulated process, and can compare their performance with that obtained in the case studies in the text are included. A number of additional homework problems encourage the reader to implement and obtain a deeper understanding of the techniques. The reader will obtain a background in data-driven techniques for fault detection and diagnosis, including the ability to implement the techniques and to know how to select the right technique for a particular application Engineering Control Data Structures Industrial Chemistry/Chemical Engineering Chemical engineering Data structures (Computer science) Control engineering Prozessüberwachung (DE-588)4133922-8 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Wissensbasiertes System (DE-588)4197554-6 gnd rswk-swf Chemische Verfahrenstechnik (DE-588)4069941-9 gnd rswk-swf Fehlererkennung (DE-588)4133764-5 gnd rswk-swf Chemische Verfahrenstechnik (DE-588)4069941-9 s Prozessüberwachung (DE-588)4133922-8 s Fehlererkennung (DE-588)4133764-5 s Datenanalyse (DE-588)4123037-1 s 1\p DE-604 Wissensbasiertes System (DE-588)4197554-6 s 2\p DE-604 Russell, Evan L. aut Braatz, Richard D. aut Erscheint auch als Druck-Ausgabe 9781852333270 https://doi.org/10.1007/978-1-4471-0347-9 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chiang, Leo H. Russell, Evan L. Braatz, Richard D. Fault Detection and Diagnosis in Industrial Systems Engineering Control Data Structures Industrial Chemistry/Chemical Engineering Chemical engineering Data structures (Computer science) Control engineering Prozessüberwachung (DE-588)4133922-8 gnd Datenanalyse (DE-588)4123037-1 gnd Wissensbasiertes System (DE-588)4197554-6 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Fehlererkennung (DE-588)4133764-5 gnd |
subject_GND | (DE-588)4133922-8 (DE-588)4123037-1 (DE-588)4197554-6 (DE-588)4069941-9 (DE-588)4133764-5 |
title | Fault Detection and Diagnosis in Industrial Systems |
title_auth | Fault Detection and Diagnosis in Industrial Systems |
title_exact_search | Fault Detection and Diagnosis in Industrial Systems |
title_full | Fault Detection and Diagnosis in Industrial Systems by Leo H. Chiang, Evan L. Russell, Richard D. Braatz |
title_fullStr | Fault Detection and Diagnosis in Industrial Systems by Leo H. Chiang, Evan L. Russell, Richard D. Braatz |
title_full_unstemmed | Fault Detection and Diagnosis in Industrial Systems by Leo H. Chiang, Evan L. Russell, Richard D. Braatz |
title_short | Fault Detection and Diagnosis in Industrial Systems |
title_sort | fault detection and diagnosis in industrial systems |
topic | Engineering Control Data Structures Industrial Chemistry/Chemical Engineering Chemical engineering Data structures (Computer science) Control engineering Prozessüberwachung (DE-588)4133922-8 gnd Datenanalyse (DE-588)4123037-1 gnd Wissensbasiertes System (DE-588)4197554-6 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Fehlererkennung (DE-588)4133764-5 gnd |
topic_facet | Engineering Control Data Structures Industrial Chemistry/Chemical Engineering Chemical engineering Data structures (Computer science) Control engineering Prozessüberwachung Datenanalyse Wissensbasiertes System Chemische Verfahrenstechnik Fehlererkennung |
url | https://doi.org/10.1007/978-1-4471-0347-9 |
work_keys_str_mv | AT chiangleoh faultdetectionanddiagnosisinindustrialsystems AT russellevanl faultdetectionanddiagnosisinindustrialsystems AT braatzrichardd faultdetectionanddiagnosisinindustrialsystems |