Knowledge Discovery for Business Information Systems:
Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless,...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2002
|
Schriftenreihe: | The International Series in Engineering and Computer Science
600 |
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA. |
Beschreibung: | 1 Online-Ressource (XVIII, 432 p) |
ISBN: | 9780306469916 |
DOI: | 10.1007/b116447 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045148413 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780306469916 |9 978-0-306-46991-6 | ||
024 | 7 | |a 10.1007/b116447 |2 doi | |
035 | |a (ZDB-2-ENG)978-0-306-46991-6 | ||
035 | |a (OCoLC)1050946590 | ||
035 | |a (DE-599)BVBBV045148413 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 005.74 |2 23 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
245 | 1 | 0 | |a Knowledge Discovery for Business Information Systems |c edited by Witold Abramowicz, Jozef Zurada |
264 | 1 | |a Boston, MA |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (XVIII, 432 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The International Series in Engineering and Computer Science |v 600 | |
520 | |a Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA. | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Data Structures, Cryptology and Information Theory | |
650 | 4 | |a IT in Business | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computer science | |
650 | 4 | |a Information technology | |
650 | 4 | |a Business / Data processing | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Artificial intelligence | |
700 | 1 | |a Abramowicz, Witold |4 edt | |
700 | 1 | |a Zurada, Jozef |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792372431 |
856 | 4 | 0 | |u https://doi.org/10.1007/b116447 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538112 | ||
966 | e | |u https://doi.org/10.1007/b116447 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b116447 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178818359885824 |
---|---|
any_adam_object | |
author2 | Abramowicz, Witold Zurada, Jozef |
author2_role | edt edt |
author2_variant | w a wa j z jz |
author_facet | Abramowicz, Witold Zurada, Jozef |
building | Verbundindex |
bvnumber | BV045148413 |
classification_rvk | ST 530 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-0-306-46991-6 (OCoLC)1050946590 (DE-599)BVBBV045148413 |
dewey-full | 005.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.74 |
dewey-search | 005.74 |
dewey-sort | 15.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/b116447 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03245nmm a2200517zcb4500</leader><controlfield tag="001">BV045148413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306469916</subfield><subfield code="9">978-0-306-46991-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b116447</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-0-306-46991-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050946590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148413</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knowledge Discovery for Business Information Systems</subfield><subfield code="c">edited by Witold Abramowicz, Jozef Zurada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 432 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The International Series in Engineering and Computer Science</subfield><subfield code="v">600</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures, Cryptology and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IT in Business</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abramowicz, Witold</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zurada, Jozef</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792372431</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b116447</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538112</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b116447</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b116447</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148413 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:01Z |
institution | BVB |
isbn | 9780306469916 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538112 |
oclc_num | 1050946590 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XVIII, 432 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
series2 | The International Series in Engineering and Computer Science |
spelling | Knowledge Discovery for Business Information Systems edited by Witold Abramowicz, Jozef Zurada Boston, MA Springer US 2002 1 Online-Ressource (XVIII, 432 p) txt rdacontent c rdamedia cr rdacarrier The International Series in Engineering and Computer Science 600 Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA. Computer Science Data Structures, Cryptology and Information Theory IT in Business Artificial Intelligence (incl. Robotics) Computer science Information technology Business / Data processing Data structures (Computer science) Artificial intelligence Abramowicz, Witold edt Zurada, Jozef edt Erscheint auch als Druck-Ausgabe 9780792372431 https://doi.org/10.1007/b116447 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Knowledge Discovery for Business Information Systems Computer Science Data Structures, Cryptology and Information Theory IT in Business Artificial Intelligence (incl. Robotics) Computer science Information technology Business / Data processing Data structures (Computer science) Artificial intelligence |
title | Knowledge Discovery for Business Information Systems |
title_auth | Knowledge Discovery for Business Information Systems |
title_exact_search | Knowledge Discovery for Business Information Systems |
title_full | Knowledge Discovery for Business Information Systems edited by Witold Abramowicz, Jozef Zurada |
title_fullStr | Knowledge Discovery for Business Information Systems edited by Witold Abramowicz, Jozef Zurada |
title_full_unstemmed | Knowledge Discovery for Business Information Systems edited by Witold Abramowicz, Jozef Zurada |
title_short | Knowledge Discovery for Business Information Systems |
title_sort | knowledge discovery for business information systems |
topic | Computer Science Data Structures, Cryptology and Information Theory IT in Business Artificial Intelligence (incl. Robotics) Computer science Information technology Business / Data processing Data structures (Computer science) Artificial intelligence |
topic_facet | Computer Science Data Structures, Cryptology and Information Theory IT in Business Artificial Intelligence (incl. Robotics) Computer science Information technology Business / Data processing Data structures (Computer science) Artificial intelligence |
url | https://doi.org/10.1007/b116447 |
work_keys_str_mv | AT abramowiczwitold knowledgediscoveryforbusinessinformationsystems AT zuradajozef knowledgediscoveryforbusinessinformationsystems |