Machine learning and medical imaging:
2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier Academic Press
[2016]
|
Schriftenreihe: | The Elsevier and MICCAI Society book series
|
Schlagworte: | |
Online-Zugang: | TUBA1 URL des Erstveröffentlichers |
Zusammenfassung: | 2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2.2.6.3 Correlated phenotypes; 2.2.6.4 Multidimensional traits; 2.3 Applications; 2.3.1 Genetic Association Studies; 2.3.2 Imaging Genetics; 2.4 Conclusion and Future Directions; Acknowledgments; Appendix A: Reproducing Kernel Hilbert Spaces; Appendix A.1: Inner Product and Hilbert Space 3.2.3.3 Task identification using functional MRI dataset3.2.3.4 Early diagnosis of Alzheimer's disease; 3.2.3.5 High-level 3D PET image feature learning; 3.3 Focus on Deep Learning in Multiple Sclerosis; 3.3.1 Multiple Sclerosis and the Role of Imaging; 3.3.2 White Matter Lesion Segmentation; 3.3.2.1 Patch-based segmentation methods; 3.3.2.2 Convolutional encoder network segmentation; 3.3.3 Modeling Disease Variability; 3.4 Future Research Needs; Acknowledgments; References; Chapter 4: Machine learning and its application in microscopic image analysis; 4.1 Introduction; 4.2 Detection Appendix A.2: Kernel Function and Kernel MatrixAppendix A.3: Reproducing Kernel Hilbert Space; Appendix A.4: Mercer's Theorem; Appendix A.5: Representer Theorem; Appendix B: Restricted Maximum Likelihood Estimation; References; Chapter 3: Deep learning of brain images and its application to multiple sclerosis; 3.1 Introduction; 3.1.1 Learning From Unlabeled Input Images; 3.1.1.1 From restricted Boltzmann machines to deep belief networks; Inference; Training; Deep belief networks; 3.1.1.2 Variants of restricted Boltzmann machines and deep belief networks; Convolutional DBNs |
Beschreibung: | Includes index |
Beschreibung: | 1 Online-Ressource (xxiii, 487 Seiten) Illustrationen |
ISBN: | 0128041145 9780128041147 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045136488 | ||
003 | DE-604 | ||
005 | 20181004 | ||
007 | cr|uuu---uuuuu | ||
008 | 180817s2016 |||| o||u| ||||||eng d | ||
020 | |a 0128041145 |9 0-12-804114-5 | ||
020 | |a 9780128041147 |9 978-0-12-804114-7 | ||
035 | |a (OCoLC)1050937490 | ||
035 | |a (DE-599)GBV879398892 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Wu, Guorong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning and medical imaging |c Guorong Wu, Dinggang Shen, Mert R. Sabuncu |
264 | 1 | |a Amsterdam |b Elsevier Academic Press |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (xxiii, 487 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Elsevier and MICCAI Society book series | |
500 | |a Includes index | ||
520 | 3 | |a 2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2.2.6.3 Correlated phenotypes; 2.2.6.4 Multidimensional traits; 2.3 Applications; 2.3.1 Genetic Association Studies; 2.3.2 Imaging Genetics; 2.4 Conclusion and Future Directions; Acknowledgments; Appendix A: Reproducing Kernel Hilbert Spaces; Appendix A.1: Inner Product and Hilbert Space | |
520 | 3 | |a 3.2.3.3 Task identification using functional MRI dataset3.2.3.4 Early diagnosis of Alzheimer's disease; 3.2.3.5 High-level 3D PET image feature learning; 3.3 Focus on Deep Learning in Multiple Sclerosis; 3.3.1 Multiple Sclerosis and the Role of Imaging; 3.3.2 White Matter Lesion Segmentation; 3.3.2.1 Patch-based segmentation methods; 3.3.2.2 Convolutional encoder network segmentation; 3.3.3 Modeling Disease Variability; 3.4 Future Research Needs; Acknowledgments; References; Chapter 4: Machine learning and its application in microscopic image analysis; 4.1 Introduction; 4.2 Detection | |
520 | 3 | |a Appendix A.2: Kernel Function and Kernel MatrixAppendix A.3: Reproducing Kernel Hilbert Space; Appendix A.4: Mercer's Theorem; Appendix A.5: Representer Theorem; Appendix B: Restricted Maximum Likelihood Estimation; References; Chapter 3: Deep learning of brain images and its application to multiple sclerosis; 3.1 Introduction; 3.1.1 Learning From Unlabeled Input Images; 3.1.1.1 From restricted Boltzmann machines to deep belief networks; Inference; Training; Deep belief networks; 3.1.1.2 Variants of restricted Boltzmann machines and deep belief networks; Convolutional DBNs | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
653 | |a Artificial intelligence | ||
653 | |a Medical applications | ||
653 | |a Diagnostic imaging | ||
653 | |a Digital techniques | ||
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shen, Dinggang |e Verfasser |0 (DE-588)1131560000 |4 aut | |
700 | 1 | |a Sabuncu, Mert R. |d 1979- |e Verfasser |0 (DE-588)1131567862 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-12-804076-8 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128040768 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030526389 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.sciencedirect.com/science/book/9780128040768 |l TUBA1 |p ZDB-33-ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178800264609792 |
---|---|
any_adam_object | |
author | Wu, Guorong Shen, Dinggang Sabuncu, Mert R. 1979- |
author_GND | (DE-588)1131560000 (DE-588)1131567862 |
author_facet | Wu, Guorong Shen, Dinggang Sabuncu, Mert R. 1979- |
author_role | aut aut aut |
author_sort | Wu, Guorong |
author_variant | g w gw d s ds m r s mr mrs |
building | Verbundindex |
bvnumber | BV045136488 |
classification_rvk | ST 302 |
collection | ZDB-33-ESD ZDB-33-EBS ebook |
ctrlnum | (OCoLC)1050937490 (DE-599)GBV879398892 |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03877nmm a2200553 c 4500</leader><controlfield tag="001">BV045136488</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181004 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180817s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128041145</subfield><subfield code="9">0-12-804114-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128041147</subfield><subfield code="9">978-0-12-804114-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050937490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV879398892</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Guorong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning and medical imaging</subfield><subfield code="c">Guorong Wu, Dinggang Shen, Mert R. Sabuncu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier Academic Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 487 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Elsevier and MICCAI Society book series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2.2.6.3 Correlated phenotypes; 2.2.6.4 Multidimensional traits; 2.3 Applications; 2.3.1 Genetic Association Studies; 2.3.2 Imaging Genetics; 2.4 Conclusion and Future Directions; Acknowledgments; Appendix A: Reproducing Kernel Hilbert Spaces; Appendix A.1: Inner Product and Hilbert Space</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3.2.3.3 Task identification using functional MRI dataset3.2.3.4 Early diagnosis of Alzheimer's disease; 3.2.3.5 High-level 3D PET image feature learning; 3.3 Focus on Deep Learning in Multiple Sclerosis; 3.3.1 Multiple Sclerosis and the Role of Imaging; 3.3.2 White Matter Lesion Segmentation; 3.3.2.1 Patch-based segmentation methods; 3.3.2.2 Convolutional encoder network segmentation; 3.3.3 Modeling Disease Variability; 3.4 Future Research Needs; Acknowledgments; References; Chapter 4: Machine learning and its application in microscopic image analysis; 4.1 Introduction; 4.2 Detection</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Appendix A.2: Kernel Function and Kernel MatrixAppendix A.3: Reproducing Kernel Hilbert Space; Appendix A.4: Mercer's Theorem; Appendix A.5: Representer Theorem; Appendix B: Restricted Maximum Likelihood Estimation; References; Chapter 3: Deep learning of brain images and its application to multiple sclerosis; 3.1 Introduction; 3.1.1 Learning From Unlabeled Input Images; 3.1.1.1 From restricted Boltzmann machines to deep belief networks; Inference; Training; Deep belief networks; 3.1.1.2 Variants of restricted Boltzmann machines and deep belief networks; Convolutional DBNs</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Medical applications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagnostic imaging</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Digital techniques</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Dinggang</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1131560000</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabuncu, Mert R.</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1131567862</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-804076-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128040768</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030526389</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128040768</subfield><subfield code="l">TUBA1</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV045136488 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:09:43Z |
institution | BVB |
isbn | 0128041145 9780128041147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030526389 |
oclc_num | 1050937490 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (xxiii, 487 Seiten) Illustrationen |
psigel | ZDB-33-ESD ZDB-33-EBS ebook |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Elsevier Academic Press |
record_format | marc |
series2 | The Elsevier and MICCAI Society book series |
spelling | Wu, Guorong Verfasser aut Machine learning and medical imaging Guorong Wu, Dinggang Shen, Mert R. Sabuncu Amsterdam Elsevier Academic Press [2016] © 2016 1 Online-Ressource (xxiii, 487 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier The Elsevier and MICCAI Society book series Includes index 2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2.2.6.3 Correlated phenotypes; 2.2.6.4 Multidimensional traits; 2.3 Applications; 2.3.1 Genetic Association Studies; 2.3.2 Imaging Genetics; 2.4 Conclusion and Future Directions; Acknowledgments; Appendix A: Reproducing Kernel Hilbert Spaces; Appendix A.1: Inner Product and Hilbert Space 3.2.3.3 Task identification using functional MRI dataset3.2.3.4 Early diagnosis of Alzheimer's disease; 3.2.3.5 High-level 3D PET image feature learning; 3.3 Focus on Deep Learning in Multiple Sclerosis; 3.3.1 Multiple Sclerosis and the Role of Imaging; 3.3.2 White Matter Lesion Segmentation; 3.3.2.1 Patch-based segmentation methods; 3.3.2.2 Convolutional encoder network segmentation; 3.3.3 Modeling Disease Variability; 3.4 Future Research Needs; Acknowledgments; References; Chapter 4: Machine learning and its application in microscopic image analysis; 4.1 Introduction; 4.2 Detection Appendix A.2: Kernel Function and Kernel MatrixAppendix A.3: Reproducing Kernel Hilbert Space; Appendix A.4: Mercer's Theorem; Appendix A.5: Representer Theorem; Appendix B: Restricted Maximum Likelihood Estimation; References; Chapter 3: Deep learning of brain images and its application to multiple sclerosis; 3.1 Introduction; 3.1.1 Learning From Unlabeled Input Images; 3.1.1.1 From restricted Boltzmann machines to deep belief networks; Inference; Training; Deep belief networks; 3.1.1.2 Variants of restricted Boltzmann machines and deep belief networks; Convolutional DBNs Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf Artificial intelligence Medical applications Diagnostic imaging Digital techniques 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Bildgebendes Verfahren (DE-588)4006617-4 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Shen, Dinggang Verfasser (DE-588)1131560000 aut Sabuncu, Mert R. 1979- Verfasser (DE-588)1131567862 aut Erscheint auch als Druck-Ausgabe 978-0-12-804076-8 http://www.sciencedirect.com/science/book/9780128040768 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wu, Guorong Shen, Dinggang Sabuncu, Mert R. 1979- Machine learning and medical imaging Maschinelles Lernen (DE-588)4193754-5 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4006617-4 (DE-588)4143413-4 |
title | Machine learning and medical imaging |
title_auth | Machine learning and medical imaging |
title_exact_search | Machine learning and medical imaging |
title_full | Machine learning and medical imaging Guorong Wu, Dinggang Shen, Mert R. Sabuncu |
title_fullStr | Machine learning and medical imaging Guorong Wu, Dinggang Shen, Mert R. Sabuncu |
title_full_unstemmed | Machine learning and medical imaging Guorong Wu, Dinggang Shen, Mert R. Sabuncu |
title_short | Machine learning and medical imaging |
title_sort | machine learning and medical imaging |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
topic_facet | Maschinelles Lernen Bildgebendes Verfahren Aufsatzsammlung |
url | http://www.sciencedirect.com/science/book/9780128040768 |
work_keys_str_mv | AT wuguorong machinelearningandmedicalimaging AT shendinggang machinelearningandmedicalimaging AT sabuncumertr machinelearningandmedicalimaging |