Discrete-time neural observers: analysis and applications
Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Academic Press, an imprint of Elsevier
[2017]
|
Schlagworte: | |
Online-Zugang: | FLA01 URL des Erstveröffentlichers |
Zusammenfassung: | Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering |
Beschreibung: | Includes bibliographical references adn index |
Beschreibung: | 1 online resource illustrations |
ISBN: | 9780128105443 0128105445 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045131690 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180814s2017 |||| o||u| ||||||eng d | ||
020 | |a 9780128105443 |9 978-0-12-810544-3 | ||
020 | |a 0128105445 |9 0-12-810544-5 | ||
035 | |a (ZDB-33-ESD)ocn972092252 | ||
035 | |a (OCoLC)972092252 | ||
035 | |a (DE-599)BVBBV045131690 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 003.75 |2 23 | |
100 | 1 | |a Alanis, Alma Y. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Discrete-time neural observers |b analysis and applications |c Alma Y. Alanis, Edgar N. Sanchez |
264 | 1 | |a London |b Academic Press, an imprint of Elsevier |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 online resource |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references adn index | ||
520 | |a Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering | ||
650 | 7 | |a SCIENCE / System Theory |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Operations Research |2 bisacsh | |
650 | 7 | |a Discrete-time systems |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Nonlinear control theory |2 fast | |
650 | 4 | |a Discrete-time systems | |
650 | 4 | |a Nonlinear control theory | |
650 | 4 | |a Neural networks (Computer science) | |
700 | 1 | |a Sanchez, Edgar N. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128105436 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0128105437 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128105436 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030521684 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780128105436 |l FLA01 |p ZDB-33-ESD |q FLA_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178791499563008 |
---|---|
any_adam_object | |
author | Alanis, Alma Y. Sanchez, Edgar N. |
author_facet | Alanis, Alma Y. Sanchez, Edgar N. |
author_role | aut aut |
author_sort | Alanis, Alma Y. |
author_variant | a y a ay aya e n s en ens |
building | Verbundindex |
bvnumber | BV045131690 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-ESD)ocn972092252 (OCoLC)972092252 (DE-599)BVBBV045131690 |
dewey-full | 003.75 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.75 |
dewey-search | 003.75 |
dewey-sort | 13.75 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03150nmm a2200481zc 4500</leader><controlfield tag="001">BV045131690</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180814s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128105443</subfield><subfield code="9">978-0-12-810544-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128105445</subfield><subfield code="9">0-12-810544-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn972092252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)972092252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045131690</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.75</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alanis, Alma Y.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete-time neural observers</subfield><subfield code="b">analysis and applications</subfield><subfield code="c">Alma Y. Alanis, Edgar N. Sanchez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references adn index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / System Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Operations Research</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Discrete-time systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete-time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanchez, Edgar N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128105436</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0128105437</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128105436</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030521684</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128105436</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FLA_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045131690 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:09:35Z |
institution | BVB |
isbn | 9780128105443 0128105445 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030521684 |
oclc_num | 972092252 |
open_access_boolean | |
physical | 1 online resource illustrations |
psigel | ZDB-33-ESD ZDB-33-EBS ZDB-33-ESD FLA_PDA_ESD |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Alanis, Alma Y. Verfasser aut Discrete-time neural observers analysis and applications Alma Y. Alanis, Edgar N. Sanchez London Academic Press, an imprint of Elsevier [2017] © 2017 1 online resource illustrations txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references adn index Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering SCIENCE / System Theory bisacsh TECHNOLOGY & ENGINEERING / Operations Research bisacsh Discrete-time systems fast Neural networks (Computer science) fast Nonlinear control theory fast Discrete-time systems Nonlinear control theory Neural networks (Computer science) Sanchez, Edgar N. aut Erscheint auch als Druck-Ausgabe 9780128105436 Erscheint auch als Druck-Ausgabe 0128105437 http://www.sciencedirect.com/science/book/9780128105436 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Alanis, Alma Y. Sanchez, Edgar N. Discrete-time neural observers analysis and applications SCIENCE / System Theory bisacsh TECHNOLOGY & ENGINEERING / Operations Research bisacsh Discrete-time systems fast Neural networks (Computer science) fast Nonlinear control theory fast Discrete-time systems Nonlinear control theory Neural networks (Computer science) |
title | Discrete-time neural observers analysis and applications |
title_auth | Discrete-time neural observers analysis and applications |
title_exact_search | Discrete-time neural observers analysis and applications |
title_full | Discrete-time neural observers analysis and applications Alma Y. Alanis, Edgar N. Sanchez |
title_fullStr | Discrete-time neural observers analysis and applications Alma Y. Alanis, Edgar N. Sanchez |
title_full_unstemmed | Discrete-time neural observers analysis and applications Alma Y. Alanis, Edgar N. Sanchez |
title_short | Discrete-time neural observers |
title_sort | discrete time neural observers analysis and applications |
title_sub | analysis and applications |
topic | SCIENCE / System Theory bisacsh TECHNOLOGY & ENGINEERING / Operations Research bisacsh Discrete-time systems fast Neural networks (Computer science) fast Nonlinear control theory fast Discrete-time systems Nonlinear control theory Neural networks (Computer science) |
topic_facet | SCIENCE / System Theory TECHNOLOGY & ENGINEERING / Operations Research Discrete-time systems Neural networks (Computer science) Nonlinear control theory |
url | http://www.sciencedirect.com/science/book/9780128105436 |
work_keys_str_mv | AT alanisalmay discretetimeneuralobserversanalysisandapplications AT sanchezedgarn discretetimeneuralobserversanalysisandapplications |