A brief introduction to spectral graph theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Zürich
European Mathematical Society
[2018]
|
Schriftenreihe: | EMS textbooks in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | viii, 156 Seiten Illustrationen 23.5 cm x 16.5 cm |
ISBN: | 9783037191880 3037191880 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045126096 | ||
003 | DE-604 | ||
005 | 20210329 | ||
007 | t | ||
008 | 180809s2018 gw a||| |||| 00||| eng d | ||
015 | |a 18,N21 |2 dnb | ||
016 | 7 | |a 1159783926 |2 DE-101 | |
020 | |a 9783037191880 |c Festeinband |9 978-3-03719-188-0 | ||
020 | |a 3037191880 |9 3-03719-188-0 | ||
035 | |a (OCoLC)1038886264 | ||
035 | |a (DE-599)DNB1159783926 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-703 |a DE-19 |a DE-29T |a DE-20 |a DE-739 |a DE-355 |a DE-83 |a DE-11 |a DE-634 | ||
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 15A42 |2 msc | ||
084 | |a 05C50 |2 msc | ||
084 | |a 05C25 |2 msc | ||
084 | |a 11T24 |2 msc | ||
100 | 1 | |a Nica, Bogdan |d 1977- |e Verfasser |0 (DE-588)1156786754 |4 aut | |
245 | 1 | 0 | |a A brief introduction to spectral graph theory |c Bogdan Nica |
264 | 1 | |a Zürich |b European Mathematical Society |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a viii, 156 Seiten |b Illustrationen |c 23.5 cm x 16.5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a EMS textbooks in mathematics | |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
653 | |a undergraduate and graduate students | ||
653 | |a Cayley graphs | ||
653 | |a Laplacian eigenvalues of graphs | ||
653 | |a adjacency eigenvalues of graphs | ||
653 | |a algebraic graphs over finite fields | ||
653 | |a character sums | ||
689 | 0 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a European Mathematical Society Publishing House ETH-Zentrum SEW A27 |0 (DE-588)1066118477 |4 pbl | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030516192&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030516192 |
Datensatz im Suchindex
_version_ | 1804178782126342144 |
---|---|
adam_text | Contents Introduction.................. ...................................................... .. ......................... . 1 1 Graphs.......................................................... 1.1 Notions........................ 1.2 Bipartite graphs.................................................................................. 3 3 7 2 Invariants................................................. .............................. .................. 2.1 Chromatic number and independencenumber .................................. 2.2 Diameter and girth............................................................ 2.3 Isoperimetric number........................... .. 11 11 12 15 3 Regular graphs......................................................................................... ... . 3.1 Cayley graphs..................................................................... 3.2 Cayley graphs, continued.............................. . . . ..... . . 3.3 Strongly regular graphs . ... . . . . . . 3.4 Design graphs . ...... .... ... . . . . ............... ... . . . . . 19 19 22 26 29 4 Finite fields................... .... ........................................... ... ... 31 4.1 Notions........................................................................... 31 4.2 Projective combinatorics........................... ................... . . · · 33 4.3 Incidence graphs................................................... 36 5 Squares in finite fields....................................................................................... 39 5.1 The quadratic
character............................................................ 39 5.2 Quadratic reciprocity....................................... 42 5.3 Paley graphs .................................................... .... . . ... . . . 44 5.4 A comparison............................................................... 47 6 Characters....................................................................................... 6.1 Characters of finite abelian groups.............................. 6.2 Character sums over finite fields....................................................... 6.3 More character sums over finite fields.......................................... . 6.4 An application to Paley graphs......................................................... 51 51 53 57 59
viii Contents 7 Eigenvalues of graphs............................................................................................63 7.1 Adjacency and Laplacian eigenvalues ................................................ 63 7.2 First properties..................................................................................... 65 7.3 First examples............................... 68 8 Eigenvalue computations.......................................................................................73 8.1 Cayley graphs and bi-Cayley graphs of abelian groups...................... 73 8.2 Strongly regular graphs......................................................................... 76 8.3 Two gems............................................................................................... 78 8.4 Design graphs............................... 80 9 Largest eigenvalues................................................................................................ 85 9.1 Extremal eigenvalues of symmetric matrices ....................................... 85 9.2 Largest adjacency eigenvalue . . . . . ................... 86 9.3 The average degree......................... 88 9.4 A spectral Ihran theorem............................................... 91 9.5 Largest Laplacian eigenvalue of bipartite graphs................................ 93 9.6 Subgraphs............................................................................................... 94 9.7 Largest eigenvalues of trees.................................................................. 97 10 More
eigenvalues.................................................. 103 10.1 Eigenvalues of symmetric matrices: Courant-Fischer.......................... 103 10.2 A bound for the Laplacian eigenvalues............................ 104 10.3 Eigenvalues of symmetric matrices: Cauchy and Weyl.......................... 107 10.4 Subgraphs...................................................................................................109 11 Spectral bounds.................................................................................................... 113 11.1 Chromatic number and independence number....................................... 113 11.2 Isoperimetric constant............................................ 116 11.3 Edge counting........................................................................................ 122 12 Farewell................................................................. 127 12.1 Graphs without 4-cycles ..........................................................................127 12.2 The Erdos-Rényi graph.............................................................................128 12.3 Eigenvalues of the Erdos-Rényi graph....................................................130 Further reading........................................................................................................... 135 Solutions to exercises..................................... 137 Index............................................................................................................................157
|
any_adam_object | 1 |
author | Nica, Bogdan 1977- |
author_GND | (DE-588)1156786754 |
author_facet | Nica, Bogdan 1977- |
author_role | aut |
author_sort | Nica, Bogdan 1977- |
author_variant | b n bn |
building | Verbundindex |
bvnumber | BV045126096 |
classification_rvk | SK 170 SK 890 |
ctrlnum | (OCoLC)1038886264 (DE-599)DNB1159783926 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02164nam a2200553 c 4500</leader><controlfield tag="001">BV045126096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210329 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180809s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,N21</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1159783926</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037191880</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-3-03719-188-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037191880</subfield><subfield code="9">3-03719-188-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1038886264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1159783926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A42</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05C50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05C25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11T24</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nica, Bogdan</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1156786754</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A brief introduction to spectral graph theory</subfield><subfield code="c">Bogdan Nica</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 156 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">23.5 cm x 16.5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EMS textbooks in mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">undergraduate and graduate students</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cayley graphs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Laplacian eigenvalues of graphs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">adjacency eigenvalues of graphs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">algebraic graphs over finite fields</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">character sums</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">European Mathematical Society Publishing House ETH-Zentrum SEW A27</subfield><subfield code="0">(DE-588)1066118477</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030516192&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030516192</subfield></datafield></record></collection> |
id | DE-604.BV045126096 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:09:26Z |
institution | BVB |
institution_GND | (DE-588)1066118477 |
isbn | 9783037191880 3037191880 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030516192 |
oclc_num | 1038886264 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-29T DE-20 DE-739 DE-355 DE-BY-UBR DE-83 DE-11 DE-634 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-29T DE-20 DE-739 DE-355 DE-BY-UBR DE-83 DE-11 DE-634 |
physical | viii, 156 Seiten Illustrationen 23.5 cm x 16.5 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | European Mathematical Society |
record_format | marc |
series2 | EMS textbooks in mathematics |
spelling | Nica, Bogdan 1977- Verfasser (DE-588)1156786754 aut A brief introduction to spectral graph theory Bogdan Nica Zürich European Mathematical Society [2018] © 2018 viii, 156 Seiten Illustrationen 23.5 cm x 16.5 cm txt rdacontent n rdamedia nc rdacarrier EMS textbooks in mathematics Kombinatorik (DE-588)4031824-2 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf undergraduate and graduate students Cayley graphs Laplacian eigenvalues of graphs adjacency eigenvalues of graphs algebraic graphs over finite fields character sums Kombinatorik (DE-588)4031824-2 s Graphentheorie (DE-588)4113782-6 s DE-604 European Mathematical Society Publishing House ETH-Zentrum SEW A27 (DE-588)1066118477 pbl Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030516192&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nica, Bogdan 1977- A brief introduction to spectral graph theory Kombinatorik (DE-588)4031824-2 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4031824-2 (DE-588)4113782-6 |
title | A brief introduction to spectral graph theory |
title_auth | A brief introduction to spectral graph theory |
title_exact_search | A brief introduction to spectral graph theory |
title_full | A brief introduction to spectral graph theory Bogdan Nica |
title_fullStr | A brief introduction to spectral graph theory Bogdan Nica |
title_full_unstemmed | A brief introduction to spectral graph theory Bogdan Nica |
title_short | A brief introduction to spectral graph theory |
title_sort | a brief introduction to spectral graph theory |
topic | Kombinatorik (DE-588)4031824-2 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Kombinatorik Graphentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030516192&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nicabogdan abriefintroductiontospectralgraphtheory AT europeanmathematicalsocietypublishinghouseethzentrumsewa27 abriefintroductiontospectralgraphtheory |