Deep reinforcement learning hands-on: apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt
June 2018
|
Schriftenreihe: | Expert insight
|
Schlagworte: | |
Beschreibung: | xvi, 523 Seiten Illustrationen, Diagramme |
ISBN: | 9781788834247 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045117237 | ||
003 | DE-604 | ||
005 | 20190604 | ||
007 | t | ||
008 | 180806s2018 a||| |||| 00||| eng d | ||
020 | |a 9781788834247 |c pbk. |9 978-1-78883-424-7 | ||
035 | |a (OCoLC)1048228817 | ||
035 | |a (DE-599)BVBBV045117237 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-M347 |a DE-523 |a DE-N2 |a DE-1028 |a DE-11 |a DE-Aug4 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Lapan, Maxim |e Verfasser |0 (DE-588)1162287047 |4 aut | |
245 | 1 | 0 | |a Deep reinforcement learning hands-on |b apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more |c Maxim Lapan |
264 | 1 | |a Birmingham |b Packt |c June 2018 | |
300 | |a xvi, 523 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Expert insight | |
650 | 0 | 7 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 1 | 1 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030507428 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804178763953471488 |
---|---|
any_adam_object | |
author | Lapan, Maxim |
author_GND | (DE-588)1162287047 |
author_facet | Lapan, Maxim |
author_role | aut |
author_sort | Lapan, Maxim |
author_variant | m l ml |
building | Verbundindex |
bvnumber | BV045117237 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1048228817 (DE-599)BVBBV045117237 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01691nam a2200409 c 4500</leader><controlfield tag="001">BV045117237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190604 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180806s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788834247</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-78883-424-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1048228817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045117237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lapan, Maxim</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1162287047</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep reinforcement learning hands-on</subfield><subfield code="b">apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more</subfield><subfield code="c">Maxim Lapan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt</subfield><subfield code="c">June 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 523 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Expert insight</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030507428</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045117237 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:09:09Z |
institution | BVB |
isbn | 9781788834247 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030507428 |
oclc_num | 1048228817 |
open_access_boolean | |
owner | DE-573 DE-M347 DE-523 DE-N2 DE-1028 DE-11 DE-Aug4 |
owner_facet | DE-573 DE-M347 DE-523 DE-N2 DE-1028 DE-11 DE-Aug4 |
physical | xvi, 523 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt |
record_format | marc |
series2 | Expert insight |
spelling | Lapan, Maxim Verfasser (DE-588)1162287047 aut Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more Maxim Lapan Birmingham Packt June 2018 xvi, 523 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Expert insight Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Deep learning (DE-588)1135597375 s Maschinelles Lernen (DE-588)4193754-5 s 1\p DE-604 Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 s 2\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lapan, Maxim Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Deep learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4825546-4 (DE-588)1135597375 (DE-588)4193754-5 |
title | Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more |
title_auth | Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more |
title_exact_search | Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more |
title_full | Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more Maxim Lapan |
title_fullStr | Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more Maxim Lapan |
title_full_unstemmed | Deep reinforcement learning hands-on apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more Maxim Lapan |
title_short | Deep reinforcement learning hands-on |
title_sort | deep reinforcement learning hands on apply modern rl methods with deep q networks value iteration policy gradients trpo alphago zero and more |
title_sub | apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more |
topic | Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Deep learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Bestärkendes Lernen Künstliche Intelligenz Deep learning Maschinelles Lernen |
work_keys_str_mv | AT lapanmaxim deepreinforcementlearninghandsonapplymodernrlmethodswithdeepqnetworksvalueiterationpolicygradientstrpoalphagozeroandmore |