Permutation groups and cartesian decompositions:
Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for prim...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schriftenreihe: | London Mathematical Society lecture note series
449 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful |
Beschreibung: | Title from publisher's bibliographic system (viewed on 20 Jun 2018) |
Beschreibung: | 1 Online-Ressource (xiii, 323 Seiten) |
ISBN: | 9781139194006 |
DOI: | 10.1017/9781139194006 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045108178 | ||
003 | DE-604 | ||
005 | 20181213 | ||
007 | cr|uuu---uuuuu | ||
008 | 180730s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781139194006 |c Online |9 9781139194006 | ||
024 | 7 | |a 10.1017/9781139194006 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139194006 | ||
035 | |a (OCoLC)1048215620 | ||
035 | |a (DE-599)BVBBV045108178 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-384 | ||
082 | 0 | |a 512.2 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
100 | 1 | |a Praeger, Cheryl E. |d 1948- |e Verfasser |0 (DE-588)172312973 |4 aut | |
245 | 1 | 0 | |a Permutation groups and cartesian decompositions |c Cheryl E. Praeger, Csaba Schneider |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a 1 Online-Ressource (xiii, 323 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 449 | |
500 | |a Title from publisher's bibliographic system (viewed on 20 Jun 2018) | ||
520 | |a Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful | ||
650 | 4 | |a Permutation groups | |
650 | 0 | 7 | |a Permutationsgruppe |0 (DE-588)4173833-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dekomposition |0 (DE-588)4149030-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Permutationsgruppe |0 (DE-588)4173833-0 |D s |
689 | 0 | 1 | |a Dekomposition |0 (DE-588)4149030-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schneider, Csaba |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1158672322 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521675062 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781139194006 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030498590 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781139194006 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139194006 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139194006 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178746964443136 |
---|---|
any_adam_object | |
author | Praeger, Cheryl E. 1948- Schneider, Csaba ca. 20./21. Jh |
author_GND | (DE-588)172312973 (DE-588)1158672322 |
author_facet | Praeger, Cheryl E. 1948- Schneider, Csaba ca. 20./21. Jh |
author_role | aut aut |
author_sort | Praeger, Cheryl E. 1948- |
author_variant | c e p ce cep c s cs |
building | Verbundindex |
bvnumber | BV045108178 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139194006 (OCoLC)1048215620 (DE-599)BVBBV045108178 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781139194006 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03187nmm a2200505zcb4500</leader><controlfield tag="001">BV045108178</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181213 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180730s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139194006</subfield><subfield code="c">Online</subfield><subfield code="9">9781139194006</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781139194006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139194006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1048215620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045108178</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172312973</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Permutation groups and cartesian decompositions</subfield><subfield code="c">Cheryl E. Praeger, Csaba Schneider</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 323 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">449</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 20 Jun 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dekomposition</subfield><subfield code="0">(DE-588)4149030-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dekomposition</subfield><subfield code="0">(DE-588)4149030-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Csaba</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158672322</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521675062</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781139194006</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030498590</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139194006</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139194006</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139194006</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045108178 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:08:53Z |
institution | BVB |
isbn | 9781139194006 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030498590 |
oclc_num | 1048215620 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 |
owner_facet | DE-12 DE-92 DE-384 |
physical | 1 Online-Ressource (xiii, 323 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Praeger, Cheryl E. 1948- Verfasser (DE-588)172312973 aut Permutation groups and cartesian decompositions Cheryl E. Praeger, Csaba Schneider Cambridge Cambridge University Press 2018 1 Online-Ressource (xiii, 323 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 449 Title from publisher's bibliographic system (viewed on 20 Jun 2018) Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful Permutation groups Permutationsgruppe (DE-588)4173833-0 gnd rswk-swf Dekomposition (DE-588)4149030-7 gnd rswk-swf Permutationsgruppe (DE-588)4173833-0 s Dekomposition (DE-588)4149030-7 s 1\p DE-604 Schneider, Csaba ca. 20./21. Jh. Verfasser (DE-588)1158672322 aut Erscheint auch als Druck-Ausgabe 9780521675062 https://doi.org/10.1017/9781139194006 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Praeger, Cheryl E. 1948- Schneider, Csaba ca. 20./21. Jh Permutation groups and cartesian decompositions Permutation groups Permutationsgruppe (DE-588)4173833-0 gnd Dekomposition (DE-588)4149030-7 gnd |
subject_GND | (DE-588)4173833-0 (DE-588)4149030-7 |
title | Permutation groups and cartesian decompositions |
title_auth | Permutation groups and cartesian decompositions |
title_exact_search | Permutation groups and cartesian decompositions |
title_full | Permutation groups and cartesian decompositions Cheryl E. Praeger, Csaba Schneider |
title_fullStr | Permutation groups and cartesian decompositions Cheryl E. Praeger, Csaba Schneider |
title_full_unstemmed | Permutation groups and cartesian decompositions Cheryl E. Praeger, Csaba Schneider |
title_short | Permutation groups and cartesian decompositions |
title_sort | permutation groups and cartesian decompositions |
topic | Permutation groups Permutationsgruppe (DE-588)4173833-0 gnd Dekomposition (DE-588)4149030-7 gnd |
topic_facet | Permutation groups Permutationsgruppe Dekomposition |
url | https://doi.org/10.1017/9781139194006 |
work_keys_str_mv | AT praegercheryle permutationgroupsandcartesiandecompositions AT schneidercsaba permutationgroupsandcartesiandecompositions |