Data Analytics and Big Data:
Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- Preface -- Introduction -- Why this book? -- Whom is this book for? -- Organization of the book -- Glossary -- PART 1 Towards an Understanding of Big Data:Are You Ready? -- 1. From Data to Big Da...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
ISTE Ltd
2018
|
Schriftenreihe: | Informations systems, web and pervasive computing series
|
Schlagworte: | |
Zusammenfassung: | Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- Preface -- Introduction -- Why this book? -- Whom is this book for? -- Organization of the book -- Glossary -- PART 1 Towards an Understanding of Big Data:Are You Ready? -- 1. From Data to Big Data: You Must Walk Before You Can Run -- 1.1. Introduction -- 1.2. No analytics without data -- 1.2.1. Databases -- 1.2.2. Raw data -- 1.2.3. Text -- 1.2.4. Images, audios and videos -- 1.2.5. The Internet of Things -- 1.3. From bytes to yottabytes: the data revolution -- 1.4. Big data: definition -- 1.5. The 3Vs model -- 1.6. Why now and what does it bring? -- 1.7. Conclusions -- 2. Big Data: A Revolution that Changes the Game -- 2.1. Introduction -- 2.2. Beyond the 3Vs -- 2.3. From understanding data to knowledge -- 2.4. Improving decision-making -- 2.5. Things to take into account -- 2.5.1. Data complexity -- 2.5.2. Data quality: look out! Not all data are the right data -- 2.5.3. What else?...Data security -- 2.6. Big data and businesses -- 2.6.1. Opportunities -- 2.6.2. Challenges -- 2.7. Conclusions -- PART 2 Big Data Analytics: A Compilation of Advanced Analytics Techniques that Covers a Wide Range of Data -- 3. Building an Understanding of Big Data Analytics -- 3.1. Introduction -- 3.2. Before breaking down the process... What is data analytics? -- 3.3. Before and after big data analytics -- 3.4. Traditional versus advanced analytics: What is the difference? -- 3.5. Advanced analytics: new paradigm -- 3.6. New statistical and computational paradigm within the big data context -- 3.7. Conclusions -- 4. Why Data Analytics and When Can We Use It? -- 4.1. Introduction -- 4.2. Understanding the changes in context -- 4.3. When real time makes the difference -- 4.4. What should data analytics address? -- 4.5. Analytics culture within companies 4.6. Big data analytics application: examples -- 4.7. Conclusions -- 5. Data Analytics Process: There's Great Work Behind the Scenes -- 5.1. Introduction -- 5.2. More data, more questions for better answers -- 5.2.1. We can never say it enough: "there is no good wind for those who don't know where they are going" -- 5.2.2. Understanding the basics: identify what we already know and what we have yet to find out -- 5.2.3. Defining the tasks to be accomplished -- 5.2.4. Which technology to adopt? -- 5.2.5. Understanding data analytics is good but knowing how to use it is better! (What skills do you need?) -- 5.2.6. What does the data project cost and how will it pay off in time? -- 5.2.7. What will it mean to you once you find out? -- 5.3. Next steps: do you have an idea about a "secret sauce"? -- 5.3.1. First phase: find the data (data collection) -- 5.3.2. Second phase: construct the data (data preparation) -- 5.3.3. Third phase: go to exploration and modeling (data analysis) -- 5.3.4. Fourth phase: evaluate and interpret the results (evaluation and interpretation) -- 5.3.5. Fifth phase: transform data into actionable knowledge (deploy the model) -- 5.4. Disciplines that support the big data analytics process -- 5.4.1. Statistics -- 5.4.2. Machine learning -- 5.4.3. Data mining -- 5.4.4. Text mining -- 5.4.5. Database management systems -- 5.4.6. Data streams management systems -- 5.5. Wait, it's not so simple: what to avoid when building a -- 5.5.1. Minimize the model error -- 5.5.2. Maximize the likelihood of the model -- 5.5.3. What about surveys? -- 5.6. Conclusions -- PART 3 Data Analytics and Machine Learning: the Relevance of Algorithms -- 6. Machine Learning: a Method of Data Analysis that Automates Analytical Model Building -- 6.1. Introduction 6.2. From simple descriptive analysis to predictive and prescriptive analyses: what are the different steps? -- 6.3. Artificial intelligence: algorithms and techniques -- 6.4. ML: what is it? -- 6.5. Why is it important? -- 6.6. How does ML work? -- 6.6.1. Definition the business need (problem statement) and its formalization -- 6.6.2. Collection and preparation of the useful data that will be used to meet this need -- 6.6.3. Test the performance of the obtained model -- 6.6.4. Optimization and production start -- 6.7. Data scientist: the new alchemist -- 6.8. Conclusion -- 7. Supervised versus Unsupervised Algorithms: a Guided Tour -- 7.1. Introduction -- 7.2. Supervised and unsupervised learning -- 7.2.1. Supervised learning: predict, predict and predict! -- 7.2.2. Unsupervised learning: go to profiles search! -- 7.3. Regression versus classification -- 7.3.1. Regression -- 7.3.2. Classification -- 7.4. Clustering gathers data -- 7.4.1. What good could it serve? -- 7.4.2. Principle of clustering algorithms -- 7.4.3. Partitioning your data by using the K-means algorithm -- 7.5. Conclusion -- 8. Applications and Examples -- 8.1. Introduction -- 8.2. Which algorithm to use? -- 8.2.1. Supervised or unsupervised algorithm: in which case do we use each one? -- 8.2.2. What about other ML algorithms? -- 8.3. The duo big data/ML: examples of use -- 8.3.1. Netflix: show me what you are looking at and I'll personalize what you like -- 8.3.2. Amazon: when AI comes into your everyday life -- 8.3.3. And more: proof that data are a source of creativity -- 8.4. Conclusions -- Bibliography -- Index -- Other titles from iSTE in Computer Engineering -- EULA |
Beschreibung: | XXVII, 225 pages Diagramme |
ISBN: | 9781786303264 1786303264 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045103155 | ||
003 | DE-604 | ||
005 | 20211125 | ||
007 | t | ||
008 | 180725s2018 |||| |||| 00||| eng d | ||
020 | |a 9781786303264 |9 978-1-78630-326-4 | ||
020 | |a 1786303264 |c print |9 1786303264 | ||
035 | |a (OCoLC)1082341000 | ||
035 | |a (DE-599)BVBBV045103155 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-862 |a DE-521 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Sedkaoui, Soraya |e Verfasser |0 (DE-588)1163844756 |4 aut | |
245 | 1 | 0 | |a Data Analytics and Big Data |c Soraya Sedkaoui |
264 | 1 | |a London |b ISTE Ltd |c 2018 | |
300 | |a XXVII, 225 pages |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Informations systems, web and pervasive computing series | |
520 | 3 | |a Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- Preface -- Introduction -- Why this book? -- Whom is this book for? -- Organization of the book -- Glossary -- PART 1 Towards an Understanding of Big Data:Are You Ready? -- 1. From Data to Big Data: You Must Walk Before You Can Run -- 1.1. Introduction -- 1.2. No analytics without data -- 1.2.1. Databases -- 1.2.2. Raw data -- 1.2.3. Text -- 1.2.4. Images, audios and videos -- 1.2.5. The Internet of Things -- 1.3. From bytes to yottabytes: the data revolution -- 1.4. Big data: definition -- 1.5. The 3Vs model -- 1.6. Why now and what does it bring? -- 1.7. Conclusions -- 2. Big Data: A Revolution that Changes the Game -- 2.1. Introduction -- 2.2. Beyond the 3Vs -- 2.3. From understanding data to knowledge -- 2.4. Improving decision-making -- 2.5. Things to take into account -- 2.5.1. Data complexity -- 2.5.2. Data quality: look out! Not all data are the right data -- 2.5.3. What else?...Data security -- 2.6. Big data and businesses -- 2.6.1. Opportunities -- 2.6.2. Challenges -- 2.7. Conclusions -- PART 2 Big Data Analytics: A Compilation of Advanced Analytics Techniques that Covers a Wide Range of Data -- 3. Building an Understanding of Big Data Analytics -- 3.1. Introduction -- 3.2. Before breaking down the process... What is data analytics? -- 3.3. Before and after big data analytics -- 3.4. Traditional versus advanced analytics: What is the difference? -- 3.5. Advanced analytics: new paradigm -- 3.6. New statistical and computational paradigm within the big data context -- 3.7. Conclusions -- 4. Why Data Analytics and When Can We Use It? -- 4.1. Introduction -- 4.2. Understanding the changes in context -- 4.3. When real time makes the difference -- 4.4. What should data analytics address? -- 4.5. Analytics culture within companies | |
520 | 3 | |a 4.6. Big data analytics application: examples -- 4.7. Conclusions -- 5. Data Analytics Process: There's Great Work Behind the Scenes -- 5.1. Introduction -- 5.2. More data, more questions for better answers -- 5.2.1. We can never say it enough: "there is no good wind for those who don't know where they are going" -- 5.2.2. Understanding the basics: identify what we already know and what we have yet to find out -- 5.2.3. Defining the tasks to be accomplished -- 5.2.4. Which technology to adopt? -- 5.2.5. Understanding data analytics is good but knowing how to use it is better! (What skills do you need?) -- 5.2.6. What does the data project cost and how will it pay off in time? -- 5.2.7. What will it mean to you once you find out? -- 5.3. Next steps: do you have an idea about a "secret sauce"? -- 5.3.1. First phase: find the data (data collection) -- 5.3.2. Second phase: construct the data (data preparation) -- 5.3.3. Third phase: go to exploration and modeling (data analysis) -- 5.3.4. Fourth phase: evaluate and interpret the results (evaluation and interpretation) -- 5.3.5. Fifth phase: transform data into actionable knowledge (deploy the model) -- 5.4. Disciplines that support the big data analytics process -- 5.4.1. Statistics -- 5.4.2. Machine learning -- 5.4.3. Data mining -- 5.4.4. Text mining -- 5.4.5. Database management systems -- 5.4.6. Data streams management systems -- 5.5. Wait, it's not so simple: what to avoid when building a -- 5.5.1. Minimize the model error -- 5.5.2. Maximize the likelihood of the model -- 5.5.3. What about surveys? -- 5.6. Conclusions -- PART 3 Data Analytics and Machine Learning: the Relevance of Algorithms -- 6. Machine Learning: a Method of Data Analysis that Automates Analytical Model Building -- 6.1. Introduction | |
520 | 3 | |a 6.2. From simple descriptive analysis to predictive and prescriptive analyses: what are the different steps? -- 6.3. Artificial intelligence: algorithms and techniques -- 6.4. ML: what is it? -- 6.5. Why is it important? -- 6.6. How does ML work? -- 6.6.1. Definition the business need (problem statement) and its formalization -- 6.6.2. Collection and preparation of the useful data that will be used to meet this need -- 6.6.3. Test the performance of the obtained model -- 6.6.4. Optimization and production start -- 6.7. Data scientist: the new alchemist -- 6.8. Conclusion -- 7. Supervised versus Unsupervised Algorithms: a Guided Tour -- 7.1. Introduction -- 7.2. Supervised and unsupervised learning -- 7.2.1. Supervised learning: predict, predict and predict! -- 7.2.2. Unsupervised learning: go to profiles search! -- 7.3. Regression versus classification -- 7.3.1. Regression -- 7.3.2. Classification -- 7.4. Clustering gathers data -- 7.4.1. What good could it serve? -- 7.4.2. Principle of clustering algorithms -- 7.4.3. Partitioning your data by using the K-means algorithm -- 7.5. Conclusion -- 8. Applications and Examples -- 8.1. Introduction -- 8.2. Which algorithm to use? -- 8.2.1. Supervised or unsupervised algorithm: in which case do we use each one? -- 8.2.2. What about other ML algorithms? -- 8.3. The duo big data/ML: examples of use -- 8.3.1. Netflix: show me what you are looking at and I'll personalize what you like -- 8.3.2. Amazon: when AI comes into your everyday life -- 8.3.3. And more: proof that data are a source of creativity -- 8.4. Conclusions -- Bibliography -- Index -- Other titles from iSTE in Computer Engineering -- EULA | |
650 | 0 | 7 | |a Datenauswertung |0 (DE-588)4131193-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Datenauswertung |0 (DE-588)4131193-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-52805-0 |w (DE-604)BV045215785 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-52804-3 |
999 | |a oai:aleph.bib-bvb.de:BVB01-030493699 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ST 530 S448 |
DE-BY-FWS_katkey | 697107 |
DE-BY-FWS_media_number | 083000521006 |
_version_ | 1806173804310822912 |
any_adam_object | |
author | Sedkaoui, Soraya |
author_GND | (DE-588)1163844756 |
author_facet | Sedkaoui, Soraya |
author_role | aut |
author_sort | Sedkaoui, Soraya |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV045103155 |
classification_rvk | ST 530 |
ctrlnum | (OCoLC)1082341000 (DE-599)BVBBV045103155 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06672nam a2200409 c 4500</leader><controlfield tag="001">BV045103155</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211125 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180725s2018 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786303264</subfield><subfield code="9">978-1-78630-326-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1786303264</subfield><subfield code="c">print</subfield><subfield code="9">1786303264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1082341000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045103155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sedkaoui, Soraya</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1163844756</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Analytics and Big Data</subfield><subfield code="c">Soraya Sedkaoui</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE Ltd</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 225 pages</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Informations systems, web and pervasive computing series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- Preface -- Introduction -- Why this book? -- Whom is this book for? -- Organization of the book -- Glossary -- PART 1 Towards an Understanding of Big Data:Are You Ready? -- 1. From Data to Big Data: You Must Walk Before You Can Run -- 1.1. Introduction -- 1.2. No analytics without data -- 1.2.1. Databases -- 1.2.2. Raw data -- 1.2.3. Text -- 1.2.4. Images, audios and videos -- 1.2.5. The Internet of Things -- 1.3. From bytes to yottabytes: the data revolution -- 1.4. Big data: definition -- 1.5. The 3Vs model -- 1.6. Why now and what does it bring? -- 1.7. Conclusions -- 2. Big Data: A Revolution that Changes the Game -- 2.1. Introduction -- 2.2. Beyond the 3Vs -- 2.3. From understanding data to knowledge -- 2.4. Improving decision-making -- 2.5. Things to take into account -- 2.5.1. Data complexity -- 2.5.2. Data quality: look out! Not all data are the right data -- 2.5.3. What else?...Data security -- 2.6. Big data and businesses -- 2.6.1. Opportunities -- 2.6.2. Challenges -- 2.7. Conclusions -- PART 2 Big Data Analytics: A Compilation of Advanced Analytics Techniques that Covers a Wide Range of Data -- 3. Building an Understanding of Big Data Analytics -- 3.1. Introduction -- 3.2. Before breaking down the process... What is data analytics? -- 3.3. Before and after big data analytics -- 3.4. Traditional versus advanced analytics: What is the difference? -- 3.5. Advanced analytics: new paradigm -- 3.6. New statistical and computational paradigm within the big data context -- 3.7. Conclusions -- 4. Why Data Analytics and When Can We Use It? -- 4.1. Introduction -- 4.2. Understanding the changes in context -- 4.3. When real time makes the difference -- 4.4. What should data analytics address? -- 4.5. Analytics culture within companies</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">4.6. Big data analytics application: examples -- 4.7. Conclusions -- 5. Data Analytics Process: There's Great Work Behind the Scenes -- 5.1. Introduction -- 5.2. More data, more questions for better answers -- 5.2.1. We can never say it enough: "there is no good wind for those who don't know where they are going" -- 5.2.2. Understanding the basics: identify what we already know and what we have yet to find out -- 5.2.3. Defining the tasks to be accomplished -- 5.2.4. Which technology to adopt? -- 5.2.5. Understanding data analytics is good but knowing how to use it is better! (What skills do you need?) -- 5.2.6. What does the data project cost and how will it pay off in time? -- 5.2.7. What will it mean to you once you find out? -- 5.3. Next steps: do you have an idea about a "secret sauce"? -- 5.3.1. First phase: find the data (data collection) -- 5.3.2. Second phase: construct the data (data preparation) -- 5.3.3. Third phase: go to exploration and modeling (data analysis) -- 5.3.4. Fourth phase: evaluate and interpret the results (evaluation and interpretation) -- 5.3.5. Fifth phase: transform data into actionable knowledge (deploy the model) -- 5.4. Disciplines that support the big data analytics process -- 5.4.1. Statistics -- 5.4.2. Machine learning -- 5.4.3. Data mining -- 5.4.4. Text mining -- 5.4.5. Database management systems -- 5.4.6. Data streams management systems -- 5.5. Wait, it's not so simple: what to avoid when building a -- 5.5.1. Minimize the model error -- 5.5.2. Maximize the likelihood of the model -- 5.5.3. What about surveys? -- 5.6. Conclusions -- PART 3 Data Analytics and Machine Learning: the Relevance of Algorithms -- 6. Machine Learning: a Method of Data Analysis that Automates Analytical Model Building -- 6.1. Introduction</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">6.2. From simple descriptive analysis to predictive and prescriptive analyses: what are the different steps? -- 6.3. Artificial intelligence: algorithms and techniques -- 6.4. ML: what is it? -- 6.5. Why is it important? -- 6.6. How does ML work? -- 6.6.1. Definition the business need (problem statement) and its formalization -- 6.6.2. Collection and preparation of the useful data that will be used to meet this need -- 6.6.3. Test the performance of the obtained model -- 6.6.4. Optimization and production start -- 6.7. Data scientist: the new alchemist -- 6.8. Conclusion -- 7. Supervised versus Unsupervised Algorithms: a Guided Tour -- 7.1. Introduction -- 7.2. Supervised and unsupervised learning -- 7.2.1. Supervised learning: predict, predict and predict! -- 7.2.2. Unsupervised learning: go to profiles search! -- 7.3. Regression versus classification -- 7.3.1. Regression -- 7.3.2. Classification -- 7.4. Clustering gathers data -- 7.4.1. What good could it serve? -- 7.4.2. Principle of clustering algorithms -- 7.4.3. Partitioning your data by using the K-means algorithm -- 7.5. Conclusion -- 8. Applications and Examples -- 8.1. Introduction -- 8.2. Which algorithm to use? -- 8.2.1. Supervised or unsupervised algorithm: in which case do we use each one? -- 8.2.2. What about other ML algorithms? -- 8.3. The duo big data/ML: examples of use -- 8.3.1. Netflix: show me what you are looking at and I'll personalize what you like -- 8.3.2. Amazon: when AI comes into your everyday life -- 8.3.3. And more: proof that data are a source of creativity -- 8.4. Conclusions -- Bibliography -- Index -- Other titles from iSTE in Computer Engineering -- EULA</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-52805-0</subfield><subfield code="w">(DE-604)BV045215785</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-52804-3</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030493699</subfield></datafield></record></collection> |
id | DE-604.BV045103155 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T10:39:27Z |
institution | BVB |
isbn | 9781786303264 1786303264 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030493699 |
oclc_num | 1082341000 |
open_access_boolean | |
owner | DE-862 DE-BY-FWS DE-521 |
owner_facet | DE-862 DE-BY-FWS DE-521 |
physical | XXVII, 225 pages Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | ISTE Ltd |
record_format | marc |
series2 | Informations systems, web and pervasive computing series |
spellingShingle | Sedkaoui, Soraya Data Analytics and Big Data Datenauswertung (DE-588)4131193-0 gnd Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4131193-0 (DE-588)4802620-7 |
title | Data Analytics and Big Data |
title_auth | Data Analytics and Big Data |
title_exact_search | Data Analytics and Big Data |
title_full | Data Analytics and Big Data Soraya Sedkaoui |
title_fullStr | Data Analytics and Big Data Soraya Sedkaoui |
title_full_unstemmed | Data Analytics and Big Data Soraya Sedkaoui |
title_short | Data Analytics and Big Data |
title_sort | data analytics and big data |
topic | Datenauswertung (DE-588)4131193-0 gnd Big Data (DE-588)4802620-7 gnd |
topic_facet | Datenauswertung Big Data |
work_keys_str_mv | AT sedkaouisoraya dataanalyticsandbigdata |
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 530 S448 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |