Holomorphic curves in low dimensions: from symplectic ruled surfaces to planar contact manifolds
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2018]
|
Schriftenreihe: | Lecture Notes in Mathematics
2216 |
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UEI01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XIII, 294 Seiten, 33 illus., 31 illus. in color) |
ISBN: | 9783319913711 |
ISSN: | 0075-8434 |
DOI: | 10.1007/978-3-319-91371-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045099577 | ||
003 | DE-604 | ||
005 | 20220207 | ||
007 | cr|uuu---uuuuu | ||
008 | 180724s2018 |||| o||u| ||||||eng d | ||
020 | |a 9783319913711 |c Online |9 978-3-319-91371-1 | ||
024 | 7 | |a 10.1007/978-3-319-91371-1 |2 doi | |
035 | |a (ZDB-2-SMA)9783319913711 | ||
035 | |a (ZDB-2-LNM)9783319913711 | ||
035 | |a (OCoLC)1047823321 | ||
035 | |a (DE-599)BVBBV045099577 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 |a DE-384 |a DE-29 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wendl, Chris |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1163116246 |4 aut | |
245 | 1 | 0 | |a Holomorphic curves in low dimensions |b from symplectic ruled surfaces to planar contact manifolds |c Chris Wendl |
264 | 1 | |a Cham |b Springer |c [2018] | |
300 | |a 1 Online-Ressource (XIII, 294 Seiten, 33 illus., 31 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 2216 |x 0075-8434 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Complex manifolds | |
650 | 0 | 7 | |a Holomorphe Kurve |0 (DE-588)4160476-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontaktmannigfaltigkeit |0 (DE-588)4669522-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphe Kurve |0 (DE-588)4160476-3 |D s |
689 | 0 | 1 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | 2 | |a Kontaktmannigfaltigkeit |0 (DE-588)4669522-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-91369-8 |
830 | 0 | |a Lecture Notes in Mathematics |v 2216 |w (DE-604)BV014303148 |9 2216 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-91371-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2018 | |
940 | 1 | |q ZDB-2-LNM_2018 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030490180 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l BTU01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l FHR01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l FRO01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l FWS01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l FWS02 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l HTW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l TUM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UBA01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UBM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UBT01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UBW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UEI01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-91371-1 |l UPA01 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 696750 |
---|---|
_version_ | 1806184401821761536 |
any_adam_object | |
author | Wendl, Chris ca. 20./21. Jh |
author_GND | (DE-588)1163116246 |
author_facet | Wendl, Chris ca. 20./21. Jh |
author_role | aut |
author_sort | Wendl, Chris ca. 20./21. Jh |
author_variant | c w cw |
building | Verbundindex |
bvnumber | BV045099577 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783319913711 (ZDB-2-LNM)9783319913711 (OCoLC)1047823321 (DE-599)BVBBV045099577 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-91371-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03671nmm a2200757zcb4500</leader><controlfield tag="001">BV045099577</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180724s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319913711</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-91371-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-91371-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319913711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783319913711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1047823321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045099577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wendl, Chris</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1163116246</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holomorphic curves in low dimensions</subfield><subfield code="b">from symplectic ruled surfaces to planar contact manifolds</subfield><subfield code="c">Chris Wendl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 294 Seiten, 33 illus., 31 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2216</subfield><subfield code="x">0075-8434</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Kurve</subfield><subfield code="0">(DE-588)4160476-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphe Kurve</subfield><subfield code="0">(DE-588)4160476-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-91369-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2216</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">2216</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2018</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2018</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030490180</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-91371-1</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045099577 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T13:27:54Z |
institution | BVB |
isbn | 9783319913711 |
issn | 0075-8434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030490180 |
oclc_num | 1047823321 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-384 DE-29 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-384 DE-29 |
physical | 1 Online-Ressource (XIII, 294 Seiten, 33 illus., 31 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2018 ZDB-2-LNM_2018 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series | Lecture Notes in Mathematics |
series2 | Lecture notes in mathematics |
spellingShingle | Wendl, Chris ca. 20./21. Jh Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds Lecture Notes in Mathematics Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Global Analysis and Analysis on Manifolds Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Complex manifolds Holomorphe Kurve (DE-588)4160476-3 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd |
subject_GND | (DE-588)4160476-3 (DE-588)4194232-2 (DE-588)4669522-9 |
title | Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds |
title_auth | Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds |
title_exact_search | Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds |
title_full | Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds Chris Wendl |
title_fullStr | Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds Chris Wendl |
title_full_unstemmed | Holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds Chris Wendl |
title_short | Holomorphic curves in low dimensions |
title_sort | holomorphic curves in low dimensions from symplectic ruled surfaces to planar contact manifolds |
title_sub | from symplectic ruled surfaces to planar contact manifolds |
topic | Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Global Analysis and Analysis on Manifolds Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Complex manifolds Holomorphe Kurve (DE-588)4160476-3 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd |
topic_facet | Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Global Analysis and Analysis on Manifolds Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Complex manifolds Holomorphe Kurve Symplektische Geometrie Kontaktmannigfaltigkeit |
url | https://doi.org/10.1007/978-3-319-91371-1 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT wendlchris holomorphiccurvesinlowdimensionsfromsymplecticruledsurfacestoplanarcontactmanifolds |